The absolute Seebeck coefficient, electrical resistivity, and thermal resistivity were simultaneously measured on pure bismuth single crystals of various orientations between approximately 80° and 300°K. Using an overlapping two‐band many‐valley model, numerical values for the temperature dependence and anisotropy (where appropriate) of the following parameters have been calculated: (1) the overlap energy and the Fermi energy of the electrons and of the holes, (2) the density of states effective mass of the electrons and of the holes, (3) the separate electronic and lattice thermal conductivities, (4) the actual index of thermo‐electric efficiency, and (5) the hypothetical ``optimum'' index of thermoelectric efficiency. The calculated electronic thermal conductivity includes a new term due to bipolar diffusion.

1.
D.
Shoenberg
,
Proc. Roy. Soc. (London)
A170
,
341
(
1939
).
2.
D.
Shoenberg
,
Phil. Trans. Roy. Soc. (London)
A245
,
1
(
1952
).
3.
J. S.
Dhillon
and
D.
Shoenberg
,
Phil. Trans. Roy. Soc. (London)
A248
,
1
(
1955
).
4.
D. Shoenberg, Progress in Low Temperature Physics, edited by C. J. Gorter (Interscience Publishers, Inc., New York, 1957), Vol. 2, Chap. 8.
5.
N. B.
Brandt
,
A. E.
Dubrovskaya
, and
G. A.
Kytin
,
Soviet Physics‐JETP
10
,
405
(
1960
).
6.
N. B.
Brandt
,
Soviet Phys.‐JETP
11
,
975
(
1960
).
7.
J. K.
Galt
,
W. A.
Yager
,
F. R.
Merritt
,
B. B.
Cetlin
, and
A. D.
Brailsford
,
Phys. Rev.
114
,
1396
(
1959
).
8.
J. E.
Aubrey
and
R. G.
Chambers
,
J. Phys. Chem. Solids
3
,
128
(
1957
).
9.
J. E.
Aubrey
,
J. Phys. Chem. Solids
19
,
321
(
1961
).
10.
B.
Abeles
and
S.
Meiboom
,
Phys. Rev.
101
,
544
(
1956
).
11.
R. A.
Connell
and
J. A.
Marcus
,
Phys. Rev.
107
,
940
(
1957
).
12.
K.
Tanaka
,
S.
Tanuma
, and
T.
Fukuroi
,
Sci. Rept. Tohoku Univ.
A13
,
67
(
1961
).
13.
B. S.
Chandrasekhar
,
J. Phys. Chem. Solids
11
,
268
(
1959
).
14.
R. W.
Keyes
,
Phys. Rev.
104
,
665
(
1956
).
15.
B.
Lax
,
J. G.
Mavroides
,
H. J.
Zeigler
, and
R. J.
Keyes
,
Phys. Rev. Letters
5
,
241
(
1960
).
16.
R. N.
Brown
,
J. G.
Mavroides
,
M. S.
Dresselhaus
, and
B.
Lax
,
Phys. Rev. Letters
5
,
243
(
1960
).
17.
D. H.
Reneker
,
Phys. Rev.
115
,
303
(
1959
).
18.
G. E.
Smith
,
Phys. Rev.
115
,
1561
(
1959
).
19.
W.
Vickers
,
Trans. Am. Inst. Mining, Met., Petrol. Engrs.
209
,
827
(
1957
).
20.
R. W. Ure, Jr., Thermoelectricity—Science and Engineering, edited by R. R. Heikes and R. W. Ure, Jr. (Interscience Publishers, Inc., New York, 1961), pp. 322–326.
21.
P. H. Sutter, reference 20, pp. 334–336.
22.
N.
Cusack
and
P.
Kendall
,
Proc. Phys. Soc. (London)
72
,
898
(
1958
).
23.
J. E. Bauerle, reference 20, pp. 287–289, 292–295, 296, 297.
24.
J. F. Nye, Physical Properties of Crystals (Oxford University Press, London, 1960), pp. 24–26, 195–200, 204–207.
25.
M.
Kohler
,
Ann. Physik
40
,
196
(
1941
).
26.
For a convenient summary, see A. N. Gerritsen, Encyclopedia of Physics, edited by S. Flügge (Springer‐Verlag, Berlin, 1956), Vol. 19, “Electrical Conductivity,” pp. 157, 158, 173.
27.
For a convenient summary, see R. L. Powell and W. A. Blanpied, Thermal Conductivity of Metals and Alloys at Low Temperatures, NBS Circular 556, (1954), pp. 36, 37, 54.
28.
These equations and concepts are discussed by R. W. Ure, Jr., Thermoelectricity—Science and Engineering, edited by R. R. Heikes and R. W. Ure, Jr. (Interscience Publishers, Inc., New York, 1961), Chaps. 3 and 11.
29.
For both the electrons and holes, values of y of approximately −2.1 were found. The significance of this will be discussed later along with the scattering mechanism.
30.
A.
Sagar
and
R. C.
Miller
,
Bull. Am. Phys. Soc.
7
,
203
(
1962
).
31.
R. F.
Brebrick
and
A. J.
Strauss
,
Bull. Am. Phys. Soc.
7
,
203
(
1962
).
32.
M. H.
Cohen
,
Phys. Rev.
121
,
387
(
1961
);
D.
Weiner
,
Phys. Rev.
125
,
1226
(
1962
);
A. L. Jain and S. H. Koenig, Phys. Rev. (to be published).
33.
G. E.
Smith
,
J. Phys. Chem. Solids
20
,
168
(
1961
).
34.
N. E.
Philips
,
Phys. Rev.
118
,
644
(
1960
).
35.
J. R.
Sybert
,
C. G.
Grenier
, and
J. M.
Reynolds
,
Bull. Am. Phys. Soc.
7
,
74
(
1962
).
36.
As previously discussed, there really appear to be more than two active bands in bismuth. Therefore, there will be other terms in KE. However, these extra terms will be small and we have done the calculations on the two‐band model.
37.
C.
Gallo
,
R. C.
Miller
,
P. H.
Sutter
, and
R. W.
Ure
, Jr.
,
J. Appl. Phys.
33
,
3144
(
1962
).
38.
E.
Gruneisen
and
J.
Gielessen
,
Ann. Physik
26
,
449
(
1936
).
39.
E.
Gruneisen
,
K.
Rausch
, and
K.
Weiss
,
Ann. Physik
7
,
1
(
1950
).
40.
W. J.
de Haas
,
A. N.
Gerritsen
, and
W. H.
Capel
,
Physica
3
,
1143
(
1936
).
41.
Y.
Eckstein
,
A. W.
Lawson
, and
D. H.
Reneker
,
J. Appl. Phys.
31
,
1534
(
1960
).
42.
A. F. Ioffe, Physics of Semiconductors (Academic Press Inc., New York, 1960), pp. 274–281.
43.
S. V.
Airapetyants
,
Soviet Phys.‐Solid State
3
,
2093
(
1962
).
44.
A. L.
Jain
,
Phys. Rev.
114
,
1518
(
1959
).
45.
G. E.
Smith
and
R.
Wolfe
,
J. Appl. Phys.
33
,
841
(
1962
).
46.
A. F.
Ioffe
,
S. V.
Airapetyants
,
A. V.
Ioffe
,
N. V.
Kolomoets
, and
L. S.
Stilbans
,
Doklady Akad. Nauk S.S.S.R.
106
,
981
(
1956
).
47.
R. W. Ure, Jr., reference 28, pp. 355–357.
This content is only available via PDF.
You do not currently have access to this content.