Skip to main content
Log in

Critical assessment of the effectiveness of different dust control measures in a granite quarry

  • Review Article
  • Published:
Journal of Public Health Policy Aims and scope Submit manuscript

Abstract

The exposure to respirable crystalline silica found in granite dust presents significant health hazards to quarry workers and nearby communities, including silicosis and various respiratory ailments. This study evaluates the efficacy of various pollution control measures implemented in granite quarries. It aimed to provide a comprehensive critical assessment of the effectiveness of various dust control measures, considering their mechanisms, impact on air quality, and implications for worker health and community welfare. The strategy involved compiling and systematically analysing existing research articles, literature, and industry reports. The investigation identified three primary categories of measures: engineering controls, water-based suppression methods, and technological solutions. The study highlighted the significance of environmental impact and sustainability factors in selecting measures. These factors include water and energy consumption, production of secondary pollutants, long-term ecological effects, regulatory compliance, and cost-effectiveness. Operators and policymakers should utilize integrated, context-specific, inventive, and interdisciplinary strategies to efficiently control particle emissions from granite quarrying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data were used in the review.

Abbreviations

CFD:

Computational fluid dynamics

PEL:

Permissible exposure limit

PM:

Particulate matter

PPE:

Personal protective equipment

RCS:

Respirable crystalline silica

References

  1. Samarakoon KGAU, Chaminda SP, Jayawardena CL, Dassanayake ABN, Kondage YS, Kannangara KATT. A review of dimension stone extraction methods. Mining. 2023;3:516–31.

    Article  Google Scholar 

  2. Brand J, Rode AV, Madden S, Wain A, King PL, Rapp L. Ultrashort pulsed laser ablation of granite for stone conservation. Opt Laser Technol. 2022;151:108057.

    Article  Google Scholar 

  3. Careddu N. Chromaticism differentiations: a study of the diversified aesthetic appeal of the Ghiandone granite range. J Build Eng. 2020;30:101300.

    Article  Google Scholar 

  4. Wahab GMA, Gouda M, Ibrahim G. Study of physical and mechanical properties for some of Eastern Desert dimension marble and granite utilized in building decoration. Ain Shams Eng J. 2019;10:907–15.

    Article  Google Scholar 

  5. Mabey PT, Li W, Sundufu AJ, Lashari AH. Environmental impacts: Local perspectives of selected mining edge communities in Sierra Leone. Sustainability (Switzerland). 2020;12:5525.

    Article  Google Scholar 

  6. Mary’ ST, Gizaw S, Ababa JA. School of Graduate Studies Assessment of Environmental and socio of quarrying and stone crushing: the case of Ethiopian Construction Works Corporation School of Graduate Studies Assessment of Environmental and Socio-Economic Effects of Quarrying and Stone Crushing: The Case of Ethiopian Construction Works Corporation Economic Effects of Quarrying and Stone Crushing: the case of Ethiopian Addis Ababa, Ethiopia. 2019.

  7. Mwaanga P, Silondwa M, Kasali G, Banda PM. Preliminary review of mine air pollution in Zambia. Heliyon. 2019;5:e02485.

    Article  Google Scholar 

  8. Opondo EO, Ajayi DD, Makindi SM. Impacts of quarrying activities on the environment and livelihood of people in Border II sub-location, Nyando sub-county, Kisumu County, Kenya. Environ Qual Manag. 2023;32:147–60.

    Article  Google Scholar 

  9. Yu H, Zahidi I. Environmental hazards posed by mine dust, and monitoring method of mine dust pollution using remote sensing technologies: an overview. Sci Total Environ. 2023;864:161135.

    Article  Google Scholar 

  10. Prajapati SS, Nandi SS, Deshmukh A, Dhatrak SV. Exposure profile of respirable crystalline silica in stone mines in India. J Occup Environ Hyg. 2020;17:531–7.

    Article  Google Scholar 

  11. Estellita L, Santos AMA, Anjos RM, Yoshimura EM, Velasco H, da Silva AAR, et al. Analysis and risk estimates to workers of Brazilian granitic industries and sandblasters exposed to respirable crystalline silica and natural radionuclides. Radiat Meas. 2010;45:196–203.

    Article  Google Scholar 

  12. Rupani MP. Challenges and opportunities for silicosis prevention and control: need for a national health program on silicosis in India. J Occup Med Toxicol. 2023. https://doi.org/10.1186/s12995-023-00379-1.

    Article  Google Scholar 

  13. NIOSH. Health effects of occupational exposure to respirable crystalline silica. NIOSH Hazard Review. 2002;145.

  14. Ozcelik M. Comparison of the environmental impact and production cost rates of aggregates produced from stream deposits and crushed rock quarries (Boğaçay Basin/Antalya/Turkey). Geoheritage. 2022;14:18.

    Article  Google Scholar 

  15. Ding J, Li J, Qi J, Fu L. Characterization of dental dust particles and their pathogenicity to respiratory system: a narrative review. Clin Oral Investig. 2023;27:1815–29.

    Article  Google Scholar 

  16. Cook E, Velis CA, Cottom JW. Scaling up resource recovery of plastics in the emergent circular economy to prevent plastic pollution: Assessment of risks to health and safety in the Global South. Waste Manag Res. 2022;40:1680–707.

    Article  Google Scholar 

  17. Saha D, Sharma D, Satapathy BK. Challenges pertaining to particulate matter emission of toxic formulations and prospects on using green ingredients for sustainable, eco-friendly automotive brake composites. Sustain Mater Technol. 2023;37:e00680.

    Google Scholar 

  18. Siddiqua A, Hahladakis JN, Al-Attiya WAKA. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ Sci Pollut Res. 2022;29:58514–36.

    Article  Google Scholar 

  19. Bhullar MS, Pandey DC. Characterisation and investigation of PM10in different areas of surface mine. AIP Conf Proc. 2023;2521.

  20. Chaulya SK, Tiwary RK, Mondal SK, Mondal GC, Singh TB, Singh S, et al. Air quality impact assessment and management of mining activities around an international heritage site in India. Min Metall Explor. 2022;39:573–90.

    Google Scholar 

  21. Du C, Wang J, Wang Y. Study on environmental pollution caused by dumping operation in open pit mine under different factors. J Wind Eng Ind Aerodyn. 2022;226:105044.

    Article  Google Scholar 

  22. Wang S, Yin JJ, Liang Y, Tian F. Dust pollution evaluation based on grayscale average and fractal dimension of digital image. J Clean Prod. 2022;379:134691.

    Article  Google Scholar 

  23. Zafra-Pérez A, Boente C, de la Campa AS, Gómez-Galán JA, de la Rosa JD. A novel application of mobile low-cost sensors for atmospheric particulate matter monitoring in open-pit mines. Environ Technol Innov. 2023;29:102974.

    Article  Google Scholar 

  24. Zeng F, Jiang Z. Spatial and temporal evolution of mine dust research: visual knowledge mapping analysis in Web of Science from 2001 to 2021. Environ Sci Pollut Res. 2023;30:62170–200.

    Article  Google Scholar 

  25. Pouresmaieli M, Ataei M, Nouri QA. A scientometrics view on sustainable development in surface mining: everything from the beginning. Resour Policy. 2023;82:103410.

    Article  Google Scholar 

  26. Tong Y, Pang L, Li H. The air pollution mitigation effect of tourism development and its formation mechanism: new insights from BMA and SEM approaches. Air Qual Atmos Health. 2023;16:2095.

    Article  Google Scholar 

  27. Shafie S. Evaluation of factors affecting the performance of vacuums used to control respirable crystalline silica in the British Columbia Construction Industry. 2020.

  28. Kokoulin AN, May IV, Zagorodnov SY, Yuzhakov AA. On new methods for measuring and identifying dust microparticles in ambient air. Health Risk Anal. 2023. https://doi.org/10.21668/health.risk/2023.1.04.eng.

    Article  Google Scholar 

  29. Elmes M, Delbem I, Gasparon M, Ciminelli V. Single-particle analysis of atmospheric particulate matter using automated mineralogy: the potential for monitoring mine-derived emissions. Int J Environ Sci Technol. 2020;17:2743–54.

    Article  Google Scholar 

  30. Kimothi S, Chilkoti S, Rawat V, Thapliyal A, Gautam AS, Gautam S. Micro- to macro-scaling analysis of PM 25 in sensitive environment of Himalaya, India. Geol J. 2023;58:4360.

    Article  Google Scholar 

  31. Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, et al. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos Pollut Res. 2012;3:331–40.

    Article  Google Scholar 

  32. Fan L, Liu S. Respirable nano-particulate generations and their pathogenesis in mining workplaces: a review. Int J Coal Sci Technol. 2021;8:179–98.

    Article  Google Scholar 

  33. Hossain MM, Hassan R, Miah MA. GIS-based spatial mapping of the atmospheric particulate pollutant (PM2.5 and PM10) at Mymensingh City corporation areas of Bangladesh. J Mater Environ Sci. 2023;14:1037–1036.

    Google Scholar 

  34. Ivanov AV, Strizhenok AV. Evaluation of the effectiveness of dust screens and the possibilities of taking into account their influence in software models. J Phys Conf Ser. 2021;1728:012008.

    Article  Google Scholar 

  35. Mona L, Amiridis V, Cuevas E, Gkikas A, Trippetta S, Vandenbussche S, et al. Observing mineral dust in Northern Africa, The Middle East and Europe: current capabilities and challenges ahead for the development of dust services. Bull Am Meteorol Soc. 2023;104:2223.

    Article  Google Scholar 

  36. Noble TL, Parbhakar-Fox A, Berry RF, Lottermoser B. Mineral dust emissions at metalliferous mine sites. In: Environmental indicators in metal mining. Cham: Springer; 2017. p. 281–306.

  37. Said SAM, Hassan G, Walwil HM, Al-Aqeeli N. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renew Sustain Energy Rev. 2018;82:743–60.

    Article  Google Scholar 

  38. Sairanen M, Rinne M. Dust emission from crushing of hard rock aggregates. Atmos Pollut Res. 2019;10:656–64.

    Article  Google Scholar 

  39. Sarkar F. Assessment of environmental impacts of different mine unit operations on mine workers and the workplaces: a field-based investigation. J Inst Eng D. 2022;104:465.

    Article  Google Scholar 

  40. Xu G, Chen Y, Eksteen J, Xu J. Surfactant-aided coal dust suppression: a review of evaluation methods and influencing factors. Sci Total Environ. 2018;639:1060–76.

    Article  Google Scholar 

  41. Awad AH, El-Gamasy R, Abd El-Wahab AA, Abdellatif MH. Assessment of mechanical properties of HDPE composite with addition of marble and granite dust. Ain Shams Eng J. 2020;11:1211–7.

    Article  Google Scholar 

  42. Geissler N, Garsche F, di Mare F, Bracke R. Overview and comprehensive performance description of a new Micro Turbine Drilling—MTD technology for drilling laterals into hard reservoir rock. Int J Rock Mech Min Sci. 2023;161:105253.

    Article  Google Scholar 

  43. Talalay PG. Air and foam drilling in frozen soils. Cham: Springer; 2022. p. 219–58.

    Google Scholar 

  44. Adebiyi A, Kok JF, Murray BJ, Ryder CL, Stuut JBW, Kahn RA, et al. A review of coarse mineral dust in the Earth system. Aeolian Res. 2023;60:100849.

    Article  Google Scholar 

  45. Han L, Yao W, Bian Z, Zhao Y, Zhang H, Ding B, et al. Characteristics and trends of pneumoconiosis in the Jiangsu Province, China, 2006–2017. Int J Environ Res Public Health. 2019;16:437.

    Article  Google Scholar 

  46. Li L, Zhang D, Hu W, Yang Y, Zhang S, Yuan R, et al. Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: a case study through atmospheric measurement and emission inventory. Sci Total Environ. 2023;865:161235.

    Article  Google Scholar 

  47. Knapp S, Krautblatter M. Conceptual framework of energy dissipation during disintegration in rock avalanches. Front Earth Sci (Lausanne). 2020. https://doi.org/10.3389/feart.2020.00263.

    Article  Google Scholar 

  48. Shi J, Miao X, Meng H, An H, Zhang W. Study on critical damage width of parallel double-free surface blasting. Front Earth Sci (Lausanne). 2022. https://doi.org/10.3389/feart.2022.884558.

    Article  Google Scholar 

  49. Cernak I. Understanding blast-induced neurotrauma: how far have we come? Concussion. 2017;2:CNC42.

    Article  Google Scholar 

  50. Major JJ. Subaerial volcaniclastic deposits—influences of initiation mechanisms and transport behaviour on characteristics and distributions. Geol Soc Lond Spec Publ. 2023;520:29–100.

    Article  Google Scholar 

  51. Pontalier Q. Blast interactions with inert and reactive materials in heterogeneous explosive systems. 2022.

  52. Wangelaw S. Effects of Dimension stone quarrying activities in Ndarugo Area of Kiambu County, Kenya. Research Project Submitted in Partial Fulfillment of the Requirements for the Award of Master of Arts in Environmental Planning and Management, Department of Geography and Environmental Studies, University of [Internet]. Kenya; 2019. Available from: http://erepository.uonbi.ac.ke/handle/11295/109708.

  53. Adilkhodzhaev A, Kadirov I, Kudratov B, Khasanov B, Radjabov M, Kondrashenko V. Some aspects of the processes of obtaining and application of mineral powders as fillers for cement systems. E3S Web Conf. 2023;410:01021.

    Article  Google Scholar 

  54. Cleary PW, Sinnott MD, Morrison RD, Cummins S, Delaney GW. Analysis of cone crusher performance with changes in material properties and operating conditions using DEM. Miner Eng. 2017;100:49–70.

    Article  Google Scholar 

  55. Köken E, Özarslan A. New testing methodology for the quantification of rock crushability: compressive crushing value (CCV). Int J Miner Metall Mater. 2018;25:1227–36.

    Article  Google Scholar 

  56. Kumar A, Sahu R, Tripathy SK. Energy-efficient advanced ultrafine grinding of particles using stirred mills—a review. Energies (Basel). 2023;16:5277.

    Article  Google Scholar 

  57. Semsari Parapari P, Parian M, Rosenkranz J. Breakage process of mineral processing comminution machines—an approach to liberation. Adv Powder Technol. 2020;31:3669–85.

    Article  Google Scholar 

  58. Ulusoy U. A review of particle shape effects on material properties for various engineering applications: from macro to nanoscale. Minerals. 2023;13:91.

    Article  Google Scholar 

  59. Whitworth AJ, Forbes E, Verster I, Jokovic V, Awatey B, Parbhakar-Fox A. Review on advances in mineral processing technologies suitable for critical metal recovery from mining and processing wastes. Clean Eng Technol. 2022;7:100451.

    Article  Google Scholar 

  60. Gou B, Zhang M. Effects of surface grooves on rock cutting performance and contact behavior of a TBM disc cutter. Eng Fract Mech. 2022;267:108466.

    Article  Google Scholar 

  61. Kotwica K, Małkowski P. Methods of mechanical mining of compact-rock—a comparison of efficiency and energy consumption. Energies (Basel). 2019;12:3562.

    Article  Google Scholar 

  62. Yan C, Xie X, Ren Y, Ke W, Wang G. A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing. Int J Rock Mech Min Sci. 2022;149:104964.

    Article  Google Scholar 

  63. Zhang H, Le JL, Detournay E. An experimental investigation of brittle failure mechanisms in scratch tests of rock. Eng Fract Mech. 2022;275:108827.

    Article  Google Scholar 

  64. Li L, Zhang R, Li Q, Zhang K, Liu Z, Ren Z. Multidimensional spatial monitoring of open pit mine dust dispersion by unmanned aerial vehicle. Sci Rep. 2023;13:6815.

    Article  Google Scholar 

  65. Menhaje-Bena R, Modabberi S, Bakand S, Kazemian H, Khansari MG, Koohi MK. Airborne dust particles originated from sand and gravel quarries: Mineralogical, geochemical, and size distribution constraints on their potential health impacts. 2023.

  66. Wi E, Park E, Shin H, Hong J, Jeong S, Kwon JT, et al. Overall distribution of tire-wear particles, nano-carbon black, and heavy metals in size-fractionated road dust collected from steel industrial complexes. Sci Total Environ. 2023;884:163878.

    Article  Google Scholar 

  67. Zervaki O, Dionysiou DD, Kulkarni P. Characterization of a multi-stage focusing nozzle for collection of spot samples for aerosol chemical analysis. J Aerosol Sci. 2023;174:106235.

    Article  Google Scholar 

  68. Chen C, Zhu Z, Hammad A. Critical review and road map of automated methods for earthmoving equipment productivity monitoring. J Comput Civil Eng. 2022. https://doi.org/10.1061/(ASCE)CP.1943-5487.0001017.

    Article  Google Scholar 

  69. Isakov K, Madanbekov N, Altybaev A, Chopoev A, Omurbekov C. Optimization method for the drive of a multipurpose single-bucket loader with a transforming working body. E3S Web Conf. 2023;402:10012.

    Article  Google Scholar 

  70. Sun H, Liu Y, Jiang T, Liu T, Liu D. Application of dust control method based on water medium humidification in tunnel drilling and blasting construction environment. Build Environ. 2023;234:110111.

    Article  Google Scholar 

  71. Banari A, Graebe K, Rudolph M, Mohseni E, Lorenz P, Zimmer K, et al. Influence of engineered roughness microstructures on adhesion and turbulent resuspension of microparticles. J Aerosol Sci. 2023;174:106258.

    Article  Google Scholar 

  72. Credeur RA, Pak H, Zhang M, Tharrington W, Brack K, Rives C, et al. Radionuclide surrogate aerosolization, resuspension and suppression in hazardous situations. J Aerosol Sci. 2023;174:106252.

    Article  Google Scholar 

  73. Scholar AK, Professor DA. Estimate of dust suspended at different heights and its impact on different land use system. Pharma Innov J. 2023;12:1409–11.

    Google Scholar 

  74. Zhao H, Huang T, Su J, Li X. Role of height and position in the vertical distribution pattern of urban surface-deposited sediments and associated heavy metals. Environ Sci (Camb). 2023;9:3146.

    Google Scholar 

  75. Roy P, Chen L-WA, Gebreselassie A, Li Y, Chow JC, Watson JG, et al. High time-resolution fenceline air quality sensing and dispersion modeling for environmental justice-centered source attribution. Atmos Environ. 2023;305:119778.

    Article  Google Scholar 

  76. Munir S, Habeebullah TM, Mohammed AMF, Morsy EA, Rehan M, Ali K. Analysing PM2.5 and its association with PM10 and meteorology in the arid climate of Makkah, Saudi Arabia. Aerosol Air Qual Res. 2017;17:453–64.

    Article  Google Scholar 

  77. Reiminger N, Jurado X, Vazquez J, Wemmert C, Blond N, Dufresne M, et al. Effects of wind speed and atmospheric stability on the air pollution reduction rate induced by noise barriers. J Wind Eng Ind Aerodyn. 2020;200:104160.

    Article  Google Scholar 

  78. Xu M, Nie X, Li H, Cheng JCP, Mei Z. Smart construction sites: a promising approach to improving on-site HSE management performance. J Build Eng. 2022;49:104007.

    Article  Google Scholar 

  79. Ghasidian E, Kafash A, Kehl M, Yousefi M, Heydari-Guran S. Modelling Neanderthals’ dispersal routes from Caucasus towards east. PLoS ONE. 2023;18:e0281978.

    Article  Google Scholar 

  80. Khazins VM, Solov’ev SP, Loktev DN, Krasheninnikov AV, Shuvalov VV. Nearsurface air layer pollution with micronic dust particles in large-scale blasting in open pit mining. J Min Sci. 2022;58:676–89.

    Article  Google Scholar 

  81. Sadheesh S, Jeyanthi J. Analysis of seasonal variation and dispersion pattern of ambient air pollutants in an urban environment. Global NEST J. 2023.

  82. Park J. Technological and environmental innovations for sustainable mining operations. 2020.

  83. Ali MU, Liu G, Yousaf B, Ullah H, Abbas Q, Munir MAM. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ Geochem Health. 2019;41:1131–62.

    Article  Google Scholar 

  84. Fernández A, Sanchidrián JA, Segarra P, Gómez S, Li E, Navarro R. Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques. Int J Min Sci Technol. 2023;33:555–71.

    Article  Google Scholar 

  85. Shehu SA, Yusuf KO, Zabidi H, Jimoh OA, Hashim MHM. Blasting efficiency in granite aggregate quarry based on the combined effects of fragmentation and weighted environmental hazards. Min Miner Depos. 2023;17:120–8.

    Article  Google Scholar 

  86. Agharroud K, Bounab A, El Maftouhi T, Kaddouri S, Dellero H, Mihraje A-I, et al. Assessment of the sustainability of aggregate quarrying practices in northern Morocco: a case regarding the eastern provinces of the Tangier Peninsula. Bull Eng Geol Env. 2023;82:247.

    Article  Google Scholar 

  87. Brouwer DH, Rees D. Can the South African milestones for reducing exposure to respirable crystalline silica and silicosis be achieved and reliably monitored? Front Public Health. 2020. https://doi.org/10.3389/fpubh.2020.00107.

    Article  Google Scholar 

  88. Cole K, Glass D, Bence T, Pisaniello D, Knott P, Rowett S, et al. Prevention of the occupational silicosis epidemic in Australia: what do those who assess workplace health risk think should be done now? Ann Work Expo Health. 2023;67:281–7.

    Article  Google Scholar 

  89. Dhatrak S, Nandi S. Assessment of silica dust exposure profile in relation to prevalence of silicosis among Indian sandstone mine workers: Need for review of standards. Am J Ind Med. 2020;63:277–81.

    Article  Google Scholar 

  90. Gamble S, Coker CS, Franciosi F, Rynk R. Composting operations and equipment. In: The composting handbook. Elsevier; 2022. p. 341–408.

  91. Mukota TM. Appendix E: Air quality impact assessment assessment. 2022.

  92. Asif M, Haq RAU, Gulfreen E, Arshad S, Tasleem MW, Rajpoot SR, et al. Particulate matter emission sources and their control technologies. Pollut Res. 2022. https://doi.org/10.53550/PR.2022.v41i02.043.

    Article  Google Scholar 

  93. Chiang P-C, Gao X. PM Control. In: Air pollution control and design. Singapore: Springer; 2022. p. 143–78.

  94. Jones CL. Dust control and explosion prevention. In: Storage of cereal grains and their products. Elsevier; 2022. p. 431–42.

  95. Rahimi Z, Ghorbani-Shahna F, Bahrami A. Design, implementation, and evaluation of industrial ventilation systems and filtration for silica dust emissions from a mineral processing company. Indian J Occup Environ Med. 2021;25:192.

    Article  Google Scholar 

  96. Tsunemi K. Risk assessment of nano-scale solid carbon sourced from a CO2-free hydrogen manufacturer used at a steel plant and disposed at a landfill site. Process Saf Environ Prot. 2023;170:1032–8.

    Article  Google Scholar 

  97. Velasquez O. Influence of water injection rate on the vortecone, an impingement screen, and a conventional filter screen cleaning efficiency. 2019;

  98. Nie W, Zhang Y, Guo L, Zhang X, Peng H, Chen D. Research on airborne air curtain dust control technology and air volume optimization. Process Saf Environ Prot. 2023;172:113–23.

    Article  Google Scholar 

  99. Zhao X, Zhou Y, Liang C, Song J, Yu S, Liao G, et al. Airborne microplastics: occurrence, sources, fate, risks and mitigation. Sci Total Environ. 2023;858:159943.

    Article  Google Scholar 

  100. Parvej S, Naik DL, Sajid HU, Kiran R, Huang Y, Thanki N. Fugitive dust suppression in unpaved roads: state of the art research review. Sustainability. 2021;13:2399.

    Article  Google Scholar 

  101. Davis R, Singh A, Debnath K, Sabino RM, Popat K, Soares P, et al. Enhanced micro-electric discharge machining-induced surface modification on biomedical Ti-6Al-4V Alloy. J Manuf Sci Eng. 2022. https://doi.org/10.1115/1.4053110.

    Article  Google Scholar 

  102. Frazelle J. Out-of-this-world additive manufacturing. Commun ACM. 2021;64:58–62.

    Article  Google Scholar 

  103. Wei W, Tao Y, Feng T, Wu Y, Li L, Pang J, et al. Self-assembly-dominated hierarchical porous nanofibrous membranes for efficient high-temperature air filtration and unidirectional water penetration. J Memb Sci. 2023;686:121996.

    Article  Google Scholar 

  104. Yu C, Sasic S, Liu K, Salameh S, Ras RHA, van Ommen JR. Nature-Inspired self–cleaning surfaces: mechanisms, modelling, and manufacturing. Chem Eng Res Des. 2020;155:48–65.

    Article  Google Scholar 

  105. Ray SK, Khan AM, Mohalik NK, Mishra D, Mandal S, Pandey JK. Review of preventive and constructive measures for coal mine explosions: an Indian perspective. Int J Min Sci Technol. 2022;32:471–85.

    Article  Google Scholar 

  106. Yonkofski CM, Appriou D, Song X, Downs JL, Johnson CD, Milbrath VC. Water application for dust control in the central plateau: impacts, alternatives, and work strategies. Richland, WA; 2018

  107. Cai X, Zhu B, Zhang H, Li L, Xie M. Can direct environmental regulation promote green technology innovation in heavily polluting industries? Evidence from Chinese listed companies. Sci Total Environ. 2020;746:140810.

    Article  Google Scholar 

  108. Guo L, Nie W, Yin S, Liu Q, Hua Y, Cheng L, et al. The dust diffusion modeling and determination of optimal airflow rate for removing the dust generated during mine tunneling. Build Environ. 2020;178:106846.

    Article  Google Scholar 

  109. Liu Q, Cheng W, Liu L, Hua Y, Guo L, Nie W. Research on the control law of dust in the main ventilation system in excavated tunnels for cleaner production. Build Environ. 2021;205:108282.

    Article  Google Scholar 

  110. Peng H, Nie W, Cai P, Liu Q, Liu Z, Yang S. Development of a novel wind-assisted centralized spraying dedusting device for dust suppression in a fully mechanized mining face. Environ Sci Pollut Res. 2019;26:3292–307.

    Article  Google Scholar 

  111. Xiu Z, Nie W, Yan J, Chen D, Cai P, Liu Q, et al. Numerical simulation study on dust pollution characteristics and optimal dust control air flow rates during coal mine production. J Clean Prod. 2020;248:119197.

    Article  Google Scholar 

  112. Bin Thaneya A, Horvath A. Exploring regional fine particulate matter (PM2.5) exposure reduction pathways using an optimal power flow model: the case of the Illinois power grid. Environ Sci Technol. 2023;57:7989–8001.

    Article  Google Scholar 

  113. Gulia S, Tiwari R, Mendiratta S, Kaur S, Goyal SK, Kumar R. Review of scientific technology-based solutions for vehicular pollution control. Clean Technol Environ Policy. 2020;22:1955–66.

    Article  Google Scholar 

  114. Zhang Z, Dong R, Lan G, Yuan T, Tan D. Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: a review. Environ Sci Pollut Res. 2023;30:39338–76.

    Article  Google Scholar 

  115. Van Der Walt S, Du Preez S, Du Plessis JL. Particle emissions and respiratory exposure to hazardous chemical substances associated with binder jetting additive manufacturing utilizing poly methyl methacrylate. Hyg Environ Health Adv. 2022;4:100033.

    Article  Google Scholar 

  116. Yuan Z, Xu X-R. Surface characteristics and biotoxicity of airborne microplastics. 2023. p. 117–64.

  117. Chen YT, Lu CL, Lu SJ, Lee DS. Electrostatic precipitator design optimization for the removal of aerosol and airborne viruses. Sustainability (Switzerland). 2023;15:8432.

    Article  Google Scholar 

  118. Zhang J, Chen D, Zha Z. Theoretical and experimental study of trapping PM2.5 particles via magnetic confinement effect in a multi-electric field ESP. Powder Technol. 2020;368:70–9.

    Article  Google Scholar 

  119. Xiu Z, Cai P, Chen D, Nie W. Numerical simulation of dust control technology for longwall working face with convective air curtain. Environ Sci Pollut Res. 2023;30:101829–40.

    Article  Google Scholar 

  120. Chang P, Xu G, Mullins B, Abishek S, Sharifzadeh M. Numerical investigation of diesel particulate matter dispersion in an underground development face during key mining activities. Adv Powder Technol. 2020;31:3882–96.

    Article  Google Scholar 

  121. Kumar AR. Dust control examination using computational fluid dynamics dust control examination using computational fluid dynamics modeling and laboratory testing of vortecone and impingement modeling and laboratory testing of vortecone and impingement screen filters screen filters; 2018. https://doi.org/10.13023/etd.2018.383

  122. Kumar RP, Samuel C, Gautam S. A bibliometric and scientometric: analysis towards global pattern and trends related to aerosol and precipitation studies from 2002 to 2022. Air Qual Atmos Health. 2023;16:613–28.

    Article  Google Scholar 

  123. Vardhan KH, Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111197.

    Article  Google Scholar 

  124. Sharma E, Das S. Measuring impact of Indian ports on environment and effectiveness of remedial measures towards environmental pollution. Int J Environ Waste Manag. 2020;25:356.

    Article  Google Scholar 

  125. Joseph GMD, Lowndes IS, Hargreaves DM. A computational study of particulate emissions from Old Moor Quarry, UK. J Wind Eng Ind Aerodyn. 2018;172:68–84.

    Article  Google Scholar 

  126. Liu W, Huang X, Chen H, Han L. Analyzed and simulated prediction of emission characteristics of construction dust particles under multiple pollution sources. Comput Intell Neurosci. 2022. https://doi.org/10.1155/2022/7349001.

    Article  Google Scholar 

  127. Peng H, Nie W, Yu H, Cheng W, Bai P, Liu Q, et al. Research on mine dust suppression by spraying: development of an air-assisted PM10 control device based on CFD technology. Adv Powder Technol. 2019;30:2588–99.

    Article  Google Scholar 

  128. Shi G, Qi J, Wang Y, Liu S. Experimental study on the prevention of coal mine dust with biological dust suppressant. Powder Technol. 2021;391:162–72.

    Article  Google Scholar 

  129. Rajanayagam B, Sundaramahalingam M, Anand N. Cumulative effect of quarry dust on respiratory health of stone quarry workers. Univers J Public Health. 2023;11:305–13.

    Article  Google Scholar 

  130. Segura-Salazar J, Tavares LM. A life cycle-based, sustainability-driven innovation approach in the minerals industry: Application to a large-scale granitic quarry in Rio de Janeiro. Miner Eng. 2021;172:107149.

    Article  Google Scholar 

  131. Zou C. Analysis on dust control technology in open-pit quarry. J Energy Nat Resour. 2021;10:28.

    Article  Google Scholar 

  132. Rausch J, Jaramillo-Vogel D, Perseguers S, Schnidrig N, Grobéty B, Yajan P. Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier. Sci Total Environ. 2022;803:149832.

    Article  Google Scholar 

  133. Storch L, Hamatschek C, Hesse D, Feist F, Bachmann T, Eichler P, et al. Comprehensive analysis of current primary measures to mitigate brake wear particle emissions from light-duty vehicles. Atmosphere (Basel). 2023;14:712.

    Article  Google Scholar 

  134. Boutemedjet A, Bounouala M, Idres A, Benselhoub A. Assessment of dust pollution related to granite quarry operations in Kef Bouacida, Annaba (Algeria). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2019;2:89. https://doi.org/10.29202/nvngu/2019-1/13.

    Article  Google Scholar 

  135. Ekpa ID, Laniyan DG, Agbor CN, Ben UC, Okon JE. Effect of particulate matter from quarry activities on crops and plant biodiversity in South-Eastern Nigeria. Environ Monit Assess. 2023;195:837.

    Article  Google Scholar 

  136. Chamdimba G, Vunain E, Maoni M. Assessment of particulate matter exposure on ambient air and its impact on workers at two granite quarry mines at Njuli, Southern Malawi. Environ Monit Assess. 2023;195:1069.

    Article  Google Scholar 

  137. Liu X, Guo C, Wu Y, Huang C, Lu K, Zhang Y, et al. Evaluating cost and benefit of air pollution control policies in China: a systematic review. J Environ Sci. 2023;123:140–55.

    Article  Google Scholar 

  138. Githiria JM, Onifade M. The impact of mining on sustainable practices and the traditional culture of developing countries. J Environ Stud Sci. 2020;10:394–410.

    Article  Google Scholar 

  139. Pouresmaieli M, Ataei M, Taran A. Future mining based on Internet of things (IoT) and sustainability challenges. Int J Sust Dev World. 2023;30:211–28.

    Article  Google Scholar 

  140. Sahoo SK, Goswami SS. Theoretical framework for assessing the economic and environmental impact of water pollution: a detailed study on sustainable development of India. J Fut Sustain. 2024;4:23–34.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the management and staff of FYS Marketing Sdn Bhd for giving us access to their quarry site.

Disclosure of LLMs

The authors have not engaged Large Language Model (LLMs) in the course of writing and revising the manuscript.

Funding

This work was supported by the Fundamental Research Grant Scheme (FRGS) grant under Ministry of Higher Education Malaysia, grant no FRGS/1/2021/TKO/USM/02/23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Hazizan bin Mohd Hashim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saka, M.B., Hashim, M.H.M. Critical assessment of the effectiveness of different dust control measures in a granite quarry. J Public Health Pol (2024). https://doi.org/10.1057/s41271-024-00481-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1057/s41271-024-00481-6

Keywords

Navigation