Skip to main content

Neutrality as a Paradigm of Change

  • Chapter
Understanding Change
  • 351 Accesses

Abstract

Walter Fontana presents in his paper a convincing case for the relevance of neutrality as a paradigm of change for biological systems. Neutrality means a drift of a biological system through a succession of states which do not change the phenotype of the system and which are therefore neutral to natural selection. By such a succession of neutral states the system may accidentally come near to a position in which one further small incremental change in genotype implies the transfer of the system to another phenotype, a transfer which may be perceived to be an improbable one and which perhaps would not have happened in the absence of neutrality. Another twist one can give to the same argument will not look to a temporal succes sion of states but to the simultaneous occurrence of different genotypes in a population of units. All these different genotypes will produce the same phenotype and can therefore coexist in a neutral space. If a need for a differ ent phenotype should arise there will always exist in such a population of genotypes some exemplars which by some few alterations can effect a trans fer into the advantageous phenotype. In this way neutrality as a theoretical paradigm presents a good case for a continuous evolution going on in a pop ulation of genotypes being equivalent towards one another in a phenotypi cal sense. All of these genotypes stand for possible alterations. At the same time, a concept of discontinuity can be formulated on this basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Carroll, S. B., J. K. Grenier and S. D. Weatherfee (2001). From DNA to diversity. Malden, Massachusetts, Blackwell Science.

    Google Scholar 

  • Eigen, M. (1971). ‘Selforganization of matter and the evolution of biological macromolecules.’ Naturewissenschaften. 58: 465–523.

    Article  Google Scholar 

  • Eldredge, N. and S. J. Gould (1972). ‘Punctuated equilibria: an alternative to phyletic gradualism.’ Models in Paleobiology. T. J. M. Schopf. San Francisco, CA, Freeman, Cooper & Co.: 82–115.

    Google Scholar 

  • Fontana, W. and P. Schuster (1998a). ‘Continuity in evolution: on the nature of transitions.’ Science. 280: 1451–5.

    Article  Google Scholar 

  • Fontana, W. and P. Schuster (1998b). ‘Shaping space: the possible and the attainable in {RNA} genotype-phenotype mapping.’J. Theory. Biol. 194: 491–515.

    Article  Google Scholar 

  • Gould, S. J. (2002). The Structure of Evolutionary Theory. Cambridge, MA, Belknap/Harvard University Press.

    Google Scholar 

  • Griesemer, J. R. (2000). ‘Reproduction and the reduction of genetics.’ The Concept of the Gene in Development and Evolution: Historical and Epistemological Perspectives.. P. Beurton, R. Falk and H.-J. Rheinberger (eds). Cambridge, MA, Cambridge University Press: 240–85.

    Chapter  Google Scholar 

  • He, L., R. Kierzek, Santa Lucia Jr, A. E. Walter and D. H. Turner (1991). ‘Nearest-neighbour parameters for {G-U} Mismatches.’ Biochemistry. 30: 11124.

    Article  Google Scholar 

  • Huynen, M. A. (1996). ‘Exploring phenotype space through neutral evolution.’ J. Mol. Evol. 43: 165–9.

    Article  Google Scholar 

  • Huynen, M. A., P. F. Stadler and W. Fontana (1996). ‘Smoothness within ruggedness: the role of neutrality in adaptation.’ Proc. Natl. Acad. Sci. US. 93: 397–401.

    Article  Google Scholar 

  • Jaeger, J. A., D. H. Turner and M. Zuker (1989). ‘Improved predictions of secondary structures for {RNA}.’ Proc. Natl. Acad. Sci. US. 86: 7706–10.

    Article  Google Scholar 

  • Kimura, M. (1968). ‘Evolutionary rate at the molecular level.’ Nature. 217: 624–6.

    Article  Google Scholar 

  • Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge, UK, Cambridge University Press.

    Book  Google Scholar 

  • Kirschner, M. and J. Gerhart (1998). ‘Evolvability.’ Proc Natl Acad Sci US. 95(15): 8420–7.

    Article  Google Scholar 

  • Mathews, D. H., J. Sabina et al. (1999). ‘Expanded sequence dependence of thermody namic parameters improves prediction of RNA secondary structure.’ J. Mol. Biol. 288: 911–40.

    Article  Google Scholar 

  • Maynard-Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup and L. Wolpert (1985). ‘Developmental constraints and evolution.’ Quart. Rev. Biol. 60: 265–87.

    Article  Google Scholar 

  • Müller, G. B. and G. P. Wagner (1991). ‘Novelty in Evolution: Restructuring the Concept.’ Annu. Rev. Ecol. Syst. 22: 229–56.

    Article  Google Scholar 

  • Nimwegen, E. van, J. P. Crutchfield and M. Huynen (1999). ‘Neutral evolution of mutational robustness.’ Proc. Natl. Acad. Sci. US. 96: 9716–20.

    Article  Google Scholar 

  • Nussinov, R. and A. B. Jacobson (1980). ‘Fast algorithm for predicting the secondary structure of single-stranded RNA.’ Proc. Natl. Acad. Sci. US. 77(11): 6309–13.

    Article  Google Scholar 

  • Schultes, E. A. and D. P. Bartel (2000). ‘One sequence, two ribozymes: implications for the emergence of new ribozyme folds.’ Science. 289: 448–52.

    Article  Google Scholar 

  • Schuster, P., W. Fontana, P. F. Stadler and I. L. Hofacker (1994). ‘From sequences to shapes and back: a case study in RNA secondary structures.’ Proc. Roy. Soc. (London). 255: 279–84.

    Article  Google Scholar 

  • Stadler, B. M. R., P. F. Stadler, G. Wagner and W. Fontana (2001). ‘The topology of the possible: Formal spaces underlying patterns of evolutionary change.’ J. Theory. Biol.. 213: 241–74.

    Article  Google Scholar 

  • Turner, D. H., N. Sugimoto and S. M. Freier (1988). ‘RNA structure prediction.’ Annual Review of Biophysics and Biophysical Chemistry. 17: 167–92.

    Article  Google Scholar 

  • Waddington, C. H. (1942). ‘Canalization of development and the inheritance of acquired characters.’ Nature. 3811: 563–5.

    Article  Google Scholar 

  • Wagner, A. (1996). ‘Does evolutionary plasticity evolve?’ Evolution 50(3): 1008–23.

    Article  Google Scholar 

  • Wagner, G. P. and L. Altenberg (1996). ‘Complex adaptations and the evolution of evolvability.’ Evolution. 50: 967–76.

    Article  Google Scholar 

  • Walter, A. E., D. H. Turner, J. Kim, M. Lyttle, P. Muller, D. Mathews and M. Zuker (1994). ‘Coaxial stacking of helices enhances binding of oligoribonucleotides and improves prediction of RNA folding.’ Proc. Natl. Acad. Sci. 91: 9218–22.

    Article  Google Scholar 

  • Waterman, M. S. and T. F. Smith (1978). ‘RNA secondary structure: A complete mathematical analysis.’ Mathematical Biosciences. 42: 257–66.

    Article  Google Scholar 

  • Zuker, M. and D. Sankoff (1984). ‘RNA secondary structures and their prediction.’ Bull. Math. Biol. 46(4): 591–621.

    Article  Google Scholar 

  • Zuker, M. and P. Stiegler (1981). ‘Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information.’ Nucleic Acids Research. 9: 133–48.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2006 Rudolf Stichweh

About this chapter

Cite this chapter

Stichweh, R. (2006). Neutrality as a Paradigm of Change. In: Wimmer, A., Kössler, R. (eds) Understanding Change. Palgrave Macmillan, London. https://doi.org/10.1057/9780230524644_6

Download citation

Publish with us

Policies and ethics