Semin Reprod Med 2008; 26(2): 162-174
DOI: 10.1055/s-2008-1042955
© Thieme Medical Publishers

In Vitro Maturation of Mammalian Oocytes: Outcomes and Consequences

Kelly M. Banwell1 , Jeremy G. Thompson1
  • 1The Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, The School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, Australia
Further Information

Publication History

Publication Date:
27 February 2008 (online)

ABSTRACT

The application of in vitro maturation (IVM) of oocytes as a technology to assist animal production and clinical infertility treatment remains poor because of the reduced developmental competence of oocytes after IVM, despite several decades of research. Reduced meiotic maturation rates, fertilization rates, and blastocyst production reveal short-term developmental insufficiency of oocytes when compared with in vivo-matured counterparts. However, there is an increasing body of evidence that demonstrates the capacity of IVM efficiency to be improved, some of which is reviewed here. Of more concern is the role that IVM of oocytes may play in causing or accentuating long-term development and health of fetuses and neonates after in vitro production of embryos and embryo transfer. This is a largely unexplored area, yet the application of such techniques, especially the safety of clinical IVM, is significant and requires monitoring before acceptance as a routine procedure.

REFERENCES

  • 1 Eppig J J, Schultz R M, O'Brien M, Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes.  Dev Biol. 1994;  164 1-9
  • 2 Russell D L, Robker R L. Molecular mechanisms of ovulation: co-ordination through the cumulus complex.  Hum Reprod Update. 2007;  13 289-312
  • 3 Pincus G, Enzmann E V. The comparative behaviour of mammalian eggs in-vivo and in-vitro in the activation of ovarian eggs.  J Exp Med. 1935;  62 665-675
  • 4 Eppig J J, Schroeder A C. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro.  Biol Reprod. 1989;  41 268-276
  • 5 Combelles C MH, Cekleniak N A, Racowsky C, Albertini D F. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes.  Hum Reprod. 2002;  17 1006-1016
  • 6 van de Leemput E E, Vos P LAM, Zeinstra E C et al.. Improved in vitro embryo development using in vivo matured oocytes from heifers superovulated with a controlled preovulatory lh surge.  Theriogenology. 1999;  52 335-349
  • 7 Blondin P, Bousquet D, Twagiramungu H, Barnes F, Sirard M-A. Manipulation of follicular development to produce developmentally competent bovine oocytes.  Biol Reprod. 2002;  66 38-43
  • 8 Holm P, Booth P, Callesen H. Kinetics of early in vitro development of bovine in vivo- and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media.  Reproduction. 2002;  123 553-565
  • 9 Barnes F L, Kausche A, Tiglias J et al.. Production of embryos from in vitro-matured primary human oocytes.  Fertil Steril. 1996;  65 1151-1156
  • 10 Mikkelsen A L, Smith S D, Lindenberg S. In-vitro maturation of human oocytes from regularly menstruating women may be successful without follicle stimulating hormone priming.  Hum Reprod. 1999;  14 1847-1851
  • 11 McEvoy T G, Robinson J J, Sinclair K D. Developmental consequences of embryo and cell manipulation in mice and farm animals.  Reproduction. 2001;  122 507-518
  • 12 Young L E, Sinclair K D, Wilmut I. Large offspring syndrome in cattle and sheep.  Rev Reprod. 1998;  3 155-163
  • 13 Fleming T P, Kwong W Y, Porter R et al.. The Embryo and its future.  Biol Reprod. 2004;  71 1046-1054
  • 14 Eppig J J, O'Brien M J. Development in vitro of mouse oocytes from primordial follicles.  Biol Reprod. 1996;  54 197-207
  • 15 Eppig J J, O'Brien M J. Comparison of preimplantation developmental competence after mouse oocyte growth and development in vitro and in vivo.  Theriogenology. 1998;  49 415-422
  • 16 Hagemann L J, Beaumont S E, Berg M et al.. Development during single IVP of bovine oocytes from dissected follicles: Interactive effects of estrous cycle stage, follicle size and atresia.  Mol Reprod Dev. 1999;  53 451-458
  • 17 O'Brien M J, Pendola J K, Eppig J J. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence.  Biol Reprod. 2003;  68 1682-1686
  • 18 Gilchrist R B, Ritter L J, Armstrong D T. Oocyte-somatic cell interactions during follicle development in mammals. Animal Reproduction Science, Research and Practice III. 15th International Congress on Animal Reproduction 2004 82-83: 431-446
  • 19 Sutton M L, Gilchrist R B, Thompson J G. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity.  Hum Reprod Update. 2003;  9 35-48
  • 20 Gosden R G, Hunter R H, Telfer E, Torrance C, Brown N. Physiological factors underlying the formation of ovarian follicular fluid.  J Reprod Fertil. 1988;  82 813-825
  • 21 Merriman J A, Whittingham D G, Carroll J. The effect of follicle stimulating hormone and epidermal growth factor on the developmental capacity of in-vitro matured mouse oocytes.  Hum Reprod. 1998;  13 690-695
  • 22 Vanderhyden B C, Armstrong D T. Role of cumulus cells and serum on the in vitro maturation, fertilization, and subsequent development of rat oocytes.  Biol Reprod. 1989;  40 720-728
  • 23 Singh J, Adams G P, Pierson R A. Promise of new imaging technologies for assessing ovarian function.  Anim Reprod Sci. 2003;  78 371-399
  • 24 Ye J, Campbell K HS, Craigon J, Luck M R. Dynamic changes in meiotic progression and improvement of developmental competence of pig oocytes in vitro by follicle-stimulating hormone and cycloheximide.  Biol Reprod. 2005;  72 399-406
  • 25 Eckert J, Niemann H. In vitro maturation, fertilization and culture to blastocysts of bovine oocytes in protein-free media.  Theriogenology. 1995;  43 1211-1225
  • 26 Fukui Y, Kikuchi Y, Kondo H, Mizushima S. Fertilizability and developmental capacity of individually cultured bovine oocytes.  Theriogenology. 2000;  53 1553-1565
  • 27 Avery B, Bavister B D, Greve T. Development of bovine oocytes, in vitro matured in a chemically defined protein-free medium, supplemented with different amino acid formulations.  Theriogenology. 1998;  49 306
  • 28 Mizushima S, Fukui Y. Fertilizability and developmental capacity of bovine oocytes cultured individually in a chemically defined maturation medium.  Theriogenology. 2001;  55 1431-1445
  • 29 Lonergan P, Monaghan P, Rizos D, Boland M P, Gordon I. Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro.  Mol Reprod Dev. 1994;  37 48-53
  • 30 Kim K, Mitsumizo N, Fujita K, Utsumi K. The effects of follicular fluid on in vitro maturation, oocyte fertilization and the development of bovine embryos.  Theriogenology. 1996;  45 787-799
  • 31 Takagi M, Choi Y H, Kamishita H et al.. Evaluation of fluids from cystic follicles for in vitro maturation and fertilization of bovine oocytes.  Theriogenology. 1998;  50 307-320
  • 32 Suikkari A-M, Soderstrom-Anttila V. In-vitro maturation of eggs: is it really useful?.  Best Pract Res Clin Obstet Gynaecol. 2007;  21 145-155
  • 33 Sirard M-A, Picard L, Dery M, Coenen K, Blondin P. The time interval between FS administration and ovarian aspiration influences the development of cattle oocytes.  Theriogenology. 1999;  51 699-708
  • 34 Chian R C, Buckett W M, Tulandi T, Tan S L. Prospective randomized study of human chorionic gonadotrophin priming before immature oocyte retrieval from unstimulated women with polycystic ovarian syndrome.  Hum Reprod. 2000;  15 165-170
  • 35 Child T J, Abdul-Jalil A K, Gulekli B, Lin Tan S. In vitro maturation and fertilization of oocytes from unstimulated normal ovaries, polycystic ovaries, and women with polycystic ovary syndrome.  Fertil Steril. 2001;  76 936-942
  • 36 Lin Y-H, Hwang J-L, Huang L-W et al.. Combination of FSH priming and hCG priming for in-vitro maturation of human oocytes.  Hum Reprod. 2003;  18 1632-1636
  • 37 Soderstrom-Anttila V, Salokorpi T, Pihlaja M, Serenius-Sirve S, Suikkari A-M. Obstetric and perinatal outcome and preliminary results of development of children born after in vitro maturation of oocytes.  Hum Reprod. 2006;  21 1508-1513
  • 38 Mikkelsen A L, Lindenberg S. Benefit of FSH priming of women with PCOS to the in vitro maturation procedure and the outcome: a randomized prospective study.  Reproduction. 2001;  122 587-592
  • 39 Buccione R, Vanderhyden B C, Caron P J, Eppig J J. FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte.  Dev Biol. 1990;  138 16-25
  • 40 Webb R, Garnsworthy P C, Gong J-G, Armstrong D G. Control of follicular growth: local interactions and nutritional influences.  J Anim Sci. 2004;  82(13 Suppl) E63-E74
  • 41 Chung J T, Tosca L, Huang T H et al.. Effect of polyvinylpyrrolidone on bovine oocyte maturation in vitro and subsequent fertilization and embryonic development.  Reprod Biomed Online. 2007;  15 198-207
  • 42 Lorenzo P L, Illera M J, Illera J C, Illera M. Enhancement of cumulus expansion and nuclear maturation during bovine oocyte maturation in vitro by the addition of epidermal growth factor and insulin-like growth factor I.  J Reprod Fertil. 1994;  101 697-701
  • 43 Grupen C G, Nagashima H, Nottle M B. Role of epidermal growth factor and insulin-like growth factor-I on porcine oocyte maturation and embryonic development in vitro.  Reprod Fertil Dev. 1997;  9 571-575
  • 44 Rieger D, Luciano A M, Modina S et al.. The effects of epidermal growth factor and insulin-like growth factor-I on the metabolic activity, nuclear maturation and subsequent development of cattle oocytes in vitro.  J Reprod Fertil. 1997;  112 123-130
  • 45 Sakaguchi M, Dominko T, Leibfried-Rutledge M L, Nagai T, First N L. A combination of EGF and IGF-1 accelerates the progression of meiosis in bovine follicular oocytes in vitro and fetal calf serum neutrali zes the acceleration effect.  Theriogenology. 2000;  54 1327-1342
  • 46 Park J-Y, Su Y-Q, Ariga M et al.. EGF-like growth factors as mediators of lh action in the ovulatory follicle.  Science. 2004;  303 682-684
  • 47 Illera M J, Lorenzo P L, Illera J C, Petters R M. Developmental competence of immature pig oocytes under the influence of EGF, IGF-I, follicular fluid and gonadotropins during IVM-IVF processes.  Int J Dev Biol. 1998;  42 1169-1172
  • 48 Marques M G, Nicacio A C, de Oliveira V P et al.. In vitro maturation of pig oocytes with different media, hormone and meiosis inhibitors.  Anim Reprod Sci. 2007;  97 375-381
  • 49 Dragovic R A, Ritter L J, Schulz S J et al.. Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion.  Endocrinology. 2005;  146 2798-2806
  • 50 Eppig J J, Pendola F L, Wigglesworth K, Pendola J K. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport.  Biol Reprod. 2005;  73 351-357
  • 51 Sugiura K, Pendola F L, Eppig J J. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism.  Dev Biol. 2005;  279 20-30
  • 52a Hussein T S, Thompson J G, Gilchrist R B. Oocyte-secreted factors enhance oocyte developmental competence.  Dev Biol. 2006;  296 514-521
  • 52b Shu-Chi M, Jiann-Loung H, Yu-Hung L et al.. Growth and development of children conceived by in-vitro maturation of human oocytes.  Early Hum Dev. 2006;  82 677-682
  • 53 Gwatkin R B, Haidri A A. Oxygen requirements for the maturation of hamster oocytes.  J Reprod Fertil. 1974;  37 127-129
  • 54 Haidri A A, Miller I M, Gwatkin R B. Culture of mouse oocytes in vitro, using a system without oil or protein.  J Reprod Fertil. 1971;  26 409-411
  • 55 Boland N I, Humpherson P G, Leese H J, Gosden R G. Characterization of follicular energy metabolism.  Hum Reprod. 1994;  9 604-609
  • 56 Preis K A, Seidel G EJ, Gardner D K. Reduced oxygen concentration improves the developmental competence of mouse oocytes following in vitro maturation.  Mol Reprod Dev. 2007;  74 893-903
  • 57 Eppig J J, Wigglesworth K. Factors affecting the developmental competence of mouse oocytes grown in vitro: oxygen concentration.  Mol Reprod Dev. 1995;  42 447-456
  • 58 Zeilmaker G H, Verhamme C MPM. Observations on rat oocyte maturation in vitro: morphology and energy requirements.  Biol Reprod. 1974;  11 145-152
  • 59 Park J I, Hong J Y, Yong H Y et al.. High oxygen tension during in vitro oocyte maturation improves in vitro development of porcine oocytes after fertilization.  Anim Reprod Sci. 2005;  87 133-141
  • 60 Kikuchi K, Onishi A, Kashiwazaki N et al.. Successful piglet production after transfer of blastocysts produced by a modified in vitro system.  Biol Reprod. 2002;  66 1033-1041
  • 61 Hashimoto S, Minami N, Yamada M, Imai H. Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: relevance to intracellular reactive oxygen species and glutathione contents.  Mol Reprod Dev. 2000;  56 520-526
  • 62 Pinyopummintr T, Bavister B D. Optimum gas atmosphere for in vitro maturation and in vitro fertilisation of bovine oocytes.  Theriogenology. 1995;  44 471-477
  • 63 Hashimoto S, Minami N, Takakura R et al.. Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus-oocyte complexes.  Mol Reprod Dev. 2000;  57 353-360
  • 64 Barnett D K, Kimura J, Bavister B D. Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy.  Dev Dyn. 1996;  205 64-72
  • 65 Van Blerkom J, Davis P W, Lee J. Fertilization and early embryolgoy: ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer.  Hum Reprod. 1995;  10 415-424
  • 66 Meister A, Tate S S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization.  Annu Rev Biochem. 1976;  45 559-604
  • 67 de Matos D G, Furnus C C, Moses D F, Martinez A G, Matkovic M. Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability.  Mol Reprod Dev. 1996;  45 451-457
  • 68 de Matos D G, Furnus C C. The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development: Effect of [beta]-mercaptoethanol, cysteine and cystine.  Theriogenology. 2000;  53 761-771
  • 69 de Matos D G, Herrera C, Cortvrindt R et al.. Cysteamine supplementation during in vitro maturation and embryo culture: a useful tool for increasing the efficiency of bovine in vitro embryo production.  Mol Reprod Dev. 2002;  62 203-209
  • 70 Kito S, Bavister B D. Male pronuclear formation and early embryonic development of hamster oocytes matured in vitro with gonadotrophins, amino acids and cysteamine.  J Reprod Fertil. 1997;  110 35-46
  • 71 Grupen C G, Nagashima H, Nottle M B. Cysteamine enhances in vitro development of porcine oocytes matured and fertilized in vitro.  Biol Reprod. 1995;  53 173-178
  • 72 Gasparrini B, Neglia G, Di Palo R, Campanile G, Zicarelli L. Effect of cysteamine during in vitro maturation on buffalo embryo development.  Theriogenology. 2000;  54 1537-1542
  • 73 Eppig J J, Hosoe M, O'Brien M J et al.. Conditions that affect acquisition of developmental competence by mouse oocytes in vitro: FSH, insulin, glucose and ascorbic acid.  Mol Cell Endocrinol. 2000;  163 109-116
  • 74 Biggers J D, Whittingham D G, Donahue R P. The pattern of energy metabolism in the mouse oocyte and zygote.  Proc Natl Acad Sci USA. 1967;  58 560-567
  • 75 Sutton-McDowall M L, Gilchrist R B, Thompson J G. Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium.  Reprod Fertil Dev. 2005;  17 407-415
  • 76 Rose-Hellekant T A, Libersky-Williamson E A, Bavister B D. Energy substrates and amino acids provided during in vitro maturation of bovine oocytes alter acquisition of developmental competence.  Zygote. 1998;  6 285-294
  • 77 Krisher R L, Bavister B D. Responses of oocytes and embryos to the culture environment.  Theriogenology. 1998;  49 103-114
  • 78 Krisher R L, Bavister B D. Enhanced glycolysis after maturation of bovine oocytes in vitro is associated with increased developmental competence.  Mol Reprod Dev. 1999;  53 19-26
  • 79 Spindler R E, Pukazhenthi B S, Wildt D E. Oocyte metabolism predicts the development of cat embryos to blastocyst in vitro.  Mol Reprod Dev. 2000;  56 163-171
  • 80 Downs S M, Hudson E D. Energy substrates and the completion of spontaneous meiotic maturation.  Zygote. 2000;  8 339-351
  • 81 Roberts R, Stark J, Iatropoulou A et al.. Energy substrate metabolism of mouse cumulus-oocyte complexes: response to follicle-stimulating hormone is mediated by the phosphatidylinositol 3-kinase pathway and is associated with oocyte maturation.  Biol Reprod. 2004;  71 199-209
  • 82 Downs S M, Humpherson P G, Leese H J. Pyruvate utilisation by mouse oocytes is influenced by meiotic status and the cumulus oophorus.  Mol Reprod Dev. 2002;  62 113-123
  • 83 Colonna R, Mangia F. Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes.  Biol Reprod. 1983;  28 797-803
  • 84 Watson A J, De Sousa P, Caveney A et al.. Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number, and apoptosis.  Biol Reprod. 2000;  62 355-364
  • 85 Zachara N E, Hart G W. O-GlAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress.  Biochim Biophys Acta. 2004;  1673 13-28
  • 86 Andreozzi F, D'Alessandris C, Federici M et al.. Activation of the hexosamine pathway leads to phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 and impairs the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin insulin biosynthetic pathway in RIN pancreatic beta cells.  Endocrinology. 2004;  145 2845-2857
  • 87 D'Alessandris C, Andreozzi F, Federici M et al.. Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic beta cells.  FASEB J. 2004;  18 959-961
  • 88 Sutton-McDowall M L, Gilchrist R B, Thompson J G. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone.  Reproduction. 2004;  128 313-319
  • 89 Sutton-McDowall M L, Mitchell M, Cetica P et al.. Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development: possible role of the hexosamine pathway as a regulator of developmental competence.  Biol Reprod. 2006;  74 881-888
  • 90 Mehlmann L M. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation.  Reproduction. 2005;  130 791-799
  • 91 Conti M, Andersen C B, Richard F et al.. Role of cyclic nucleotide signaling in oocyte maturation.  Mol Cell Endocrinol. 2002;  187 153-159
  • 92 Eppig J J. The participation of cyclic adenosine monophosphate (cAMP) in the regulation of meiotic maturation of oocytes in the laboratory mouse.  J Reprod Fertil Suppl. 1989;  38 3-8
  • 93 Conti M, Andersen C B, Richard F J, Shitsukawa K, Tsafriri A. Role of cyclic nucleotide phosphodiesterases in resumption of meiosis.  Mol Cell Endocrinol. 1998;  145 9-14
  • 94 Funahashi H, Cantley T C, Day B N. Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization.  Biol Reprod. 1997;  57 49-53
  • 95 Luciano A M, Pocar P, Milanesi E et al.. Effect of different levels of intracellular cAMP on the in vitro maturation of cattle oocytes and their subsequent development following in vitro fertilization.  Mol Reprod Dev. 1999;  54 86-91
  • 96 Luciano A M, Modina S, Vassena R et al.. Role of intracellular cyclic adenosine 3′,5′-monophosphate concentration and oocyte-cumulus cells communications on the acquisition of the developmental competence during in vitro maturation of bovine oocyte.  Biol Reprod. 2004;  70 465-472
  • 97 Kadam A L, Koide S S. Identification of hypoxanthine in bovine follicular fluid.  J Pharm Sci. 1990;  79 1077-1082
  • 98 Eppig J J, Downs S M. Chemical signals that regulate mammalian oocyte maturation.  Biol Reprod. 1984;  30 1-11
  • 99 Somfai T, Kikuchi K, Onishi A et al.. Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes.  Zygote. 2003;  11 199-206
  • 100 Thomas R E, Armstrong D T, Gilchrist R B. Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation.  Dev Biol. 2002;  244 215-225
  • 101 Thomas R E, Armstrong D T, Gilchrist R B. Bovine cumulus cell-oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3′,5′-monophosophate levels.  Biol Reprod. 2004;  70 548-556
  • 102 Thomas R E, Thompson J G, Armstrong D T, Gilchrist R B. Effect of specific phosphodiesterase isoenzyme inhibitors during in vitro maturation of bovine oocytes on meiotic and developmental capacity.  Biol Reprod. 2004;  71 1142-1149
  • 103 Bagg M A, Nottle M B, Grupen C G, Armstrong D T. Effect of dibutyryl cAMP on the cAMP content, meiotic progression, and developmental potential of in vitro matured pre-pubertal and adult pig oocytes.  Mol Reprod Dev. 2006;  73 1326-1332
  • 104 Tsafriri A, Chun S-Y, Zhang R, Hsueh A JW, Conti M. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors.  Dev Biol. 1996;  178 393-402
  • 105 Lonergan P, Khatir H, Carolan C, Mermillod P. Bovine blastocyst production in vitro after inhibition of oocyte meiotic resumption for 24 h.  J Reprod Fertil. 1997;  109 355-365
  • 106 Le Beux G, Richard F J, Sirard M-A. Effect of cycloheximide, 6-DMAP, roscovitine and butyrolactone I on resumption of meiosis in porcine oocytes.  Theriogenology. 2003;  60 1049-1058
  • 107 Lonergan P, Dinnyes A, Fair T, Yang X, Boland M. Bovine oocyte and embryo development following meiotic inhibition with butyrolactone I.  Mol Reprod Dev. 2000;  57 204-209
  • 108 Wu G-M, Sun Q-Y, Mao J et al.. High developmental competence of pig oocytes after meiotic inhibition with a specific M-phase promoting factor kinase inhibitor, butyrolactone I.  Biol Reprod. 2002;  67 170-177
  • 109 Hashimoto S, Minami N, Takakura R, Imai H. Bovine immature oocytes acquire developmental competence during meiotic arrest in vitro.  Biol Reprod. 2002;  66 1696-1701
  • 110 Mermillod P, Tomanek M, Marchal R, Meijer L. High developmental competence of cattle oocytes maintained at the germinal vesicle stage for 24 hours in culture by specific inhibition of MPF kinase activity.  Mol Reprod Dev. 2000;  55 89-95
  • 111 Marchal R, Tomanek M, Terqui M, Mermillod P. Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes.  Mol Reprod Dev. 2001;  60 65-73
  • 112 Ponderato N, Crotti G, Turini P, Duchi R, Galli C, Lazzari G. Embryonic and foetal development of bovine oocytes treated with a combination of butyrolactone I and roscovitine in an enriched medium prior to IVM and IVF.  Mol Reprod Dev. 2002;  62 513-518
  • 113 Byskov A G, Andersen C Y, Leonardsen L. Role of meiosis activating sterols, MAS, in induced oocyte maturation.  Mol Cell Endocrinol. 2002;  187 189-196
  • 114 Cukurcam S, Betzendahl I, Michel G et al.. Influence of follicular fluid meiosis-activating sterol on aneuploidy rate and precocious chromatid segregation in aged mouse oocytes.  Hum Reprod. 2007;  22 815-828
  • 115 Bivens M CL, Lindenthal B, O'Brien M J et al.. A synthetic analogue of meiosis-activating sterol (FF-MAS) is a potent agonist promoting meiotic maturation.  Hum Reprod. 2004;  19 2340-2344
  • 116 Winston N J, Braude P R, Pickering S J et al.. The incidence of abnormal morphology and nucleocytoplasmic ratios in 2-, 3- and 5-day human pre-embryos.  Hum Reprod. 1991;  6 17-24
  • 117 Schramm R D, Paprocki A M, VandeVoort C A. Causes of developmental failure of in-vitro matured rhesus monkey oocytes: impairments in embryonic genome activation.  Hum Reprod. 2003;  18 826-833
  • 118 Wang Q, Latham K E. Requirement for protein synthesis during embryonic genome activation in mice.  Mol Reprod Dev. 1997;  47 265-270
  • 119 Pocar P, Brevini T AL, Perazzoli F, Cillo F, Modina S, Gandolfi F. Cellular and molecular mechanisms mediating the effects of polychlorinated biphenyls on oocyte developmental competence in cattle.  Mol Reprod Dev. 2001;  60 535-541
  • 120 De Sousa P A, Westhusin M E, Watson A J. Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos.  Mol Reprod Dev. 1998;  49 119-130
  • 121 Assou S, Anahory T, Pantesco V et al.. The human cumulus-oocyte complex gene-expression profile.  Hum Reprod. 2006;  21 1705-1719
  • 122 Goto T, Jones G M, Lolatgis N et al.. Identification and characterisation of known and novel transcripts expressed during the final stages of human oocyte maturation.  Mol Reprod Dev. 2002;  62 13-28
  • 123 Zeng F, Schultz R M. Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes.  Biol Reprod. 2003;  68 31-39
  • 124 Robert C, Barnes F L, Hue I, Sirard M A. Subtractive hybridization used to identify mRNA associated with the maturation of bovine oocytes.  Mol Reprod Dev. 2000;  57 167-175
  • 125 Robert C, Hue I, McGraw S, Gagne D, Sirard M-A. Quantification of cyclin B1 and p34cdc2 in bovine cumulus-oocyte complexes and expression mapping of genes involved in the cell cycle by complementary DNA macroarrays.  Biol Reprod. 2002;  67 1456-1464
  • 126 Dalbies-Tran R, Mermillod P. Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation.  Biol Reprod. 2003;  68 252-261
  • 127 Lonergan P, Gutiérrez-Adán A, Rizos D, Pintado B, De La Fuente J, Boland M P. Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge.  Mol Reprod Dev. 2003;  66 297-305
  • 128 Patel O V, Bettegowda A, Ireland J J et al.. Functional genomics studies of oocyte competence: evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes.  Reproduction. 2007;  133 95-106
  • 129 McKenzie L J, Pangas S A, Carson S A et al.. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF.  Hum Reprod. 2004;  19 2869-2874
  • 130 Zhang X, Jafari N, Barnes R B et al.. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality.  Fertil Steril. 2005;  83(Suppl 1) 1169-1179
  • 131 De La Fuente R. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes.  Dev Biol. 2006;  292 1-12
  • 132 Bird A. DNA methylation patterns and epigenetic memory.  Genes Dev. 2002;  16 6-21
  • 133 Lucifero D, Chaillet J R, Trasler J M. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology.  Hum Reprod Update. 2004;  10 3-18
  • 134 De Rycke M, Liebaers I, Van Steirteghem A. Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance.  Hum Reprod. 2002;  17 2487-2494
  • 135 Cox G F, Burger J, Lip V et al.. Intracytoplasmic sperm injection may increase the risk of imprinting defects.  Am J Hum Genet. 2002;  71 162-164
  • 136 Maher E R, Afnan M, Barratt C L. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs?.  Hum Reprod. 2003;  18 2508-2511
  • 137 Maher E R, Brueton L A, Bowdin S C et al.. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART).  J Med Genet. 2003;  40 62-64
  • 138 Obata Y, Kono T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth.  J Biol Chem. 2002;  277 5285-5289
  • 139 Lucifero D, Mertineit C, Clarke H J, Bestor T H, Trasler J M. Methylation dynamics of imprinted genes in mouse germ cells.  Genomics. 2002;  79 530-538
  • 140 Geuns E, De Rycke M, Van Steirteghem A, Liebaers I. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos.  Hum Mol Genet. 2003;  12 2873-2879
  • 141 El-Maarri O, Buiting K, Peery E G et al.. Maternal methylation imprints on human chromosome 15 are established during or after fertilization.  Nat Genet. 2001;  27 341-344
  • 142 Borghol N, Lornage J, Blachere T, Sophie Garret A, Lefevre A. Epigenetic status of the H19 locus in human oocytes following in vitro maturation.  Genomics. 2006;  87 417-426
  • 143 Thompson J G, Gardner D K, Pugh P A, McMillan W H, Tervit H R. Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos.  Biol Reprod. 1995;  53 1385-1391
  • 144 Holm P, Walker S K, Seamark R F. Embryo viability, duration of gestation and birth weight in sheep after transfer of in vitro matured and in vitro fertilized zygotes cultured in vitro or in vivo.  J Reprod Fertil. 1996;  107 175-181
  • 145 Park Y-S, Kim S-S, Kim J-M, Park H-D, Byun M-D. The effects of duration of in vitro maturation of bovine oocytes on subsequent development, quality and transfer of embryos.  Theriogenology. 2005;  64 123-134
  • 146 Schroeder A C, Eppig J J. The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal.  Dev Biol. 1984;  102 493-497
  • 147 Banwell K M, Lane M, Russell D L, Kind K L, Thompson J G. Oxygen concentration during mouse oocyte in vitro pre-elongation development of ovine embryos.  Bio Reprod. 2007;  22 2768-2775
  • 148 Yeo C X, Gilchrist R B, Thompson J G, Lane M. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice.  Hum Reprod. 2008;  2867-73
  • 149 Chian R-C, Buckett W M, Too L-L, Tan S-L. Pregnancies resulting from in vitro matured oocytes retrieved from patients with polycystic ovary syndrome after priming with human chorionic gonadotropin.  Fertil Steril. 1999;  72 639-642
  • 150 Trounson A, Wood C, Kausche A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients.  Fertil Steril. 1994;  62 353-362
  • 151 Cha K-Y, Chian R-C. Maturation in vitro of immature human oocytes for clinical use.  Hum Reprod Update. 1998;  4 103-120
  • 152 Cha K Y, Han S Y, Chung H M et al.. Pregnancies and deliveries after in vitro maturation culture followed by in vitro fertilization and embryo transfer without stimulation in women with polycystic ovary syndrome.  Fertil Steril. 2000;  73 978-983
  • 153 Kim B-K, Lee S-C, Kim K-J, Han C-H, Kim J-H. In vitro maturation, fertilization, and development of human germinal vesicle oocytes collected from stimulated cycles.  Fertil Steril. 2000;  74 1153-1158
  • 154 Smith S D, Mikkelsen A-L, Lindenberg S. Development of human oocytes matured in vitro for 28 or 36 hours.  Fertil Steril. 2000;  73 541-544
  • 155 Cha K Y, Chung H M, Lee D R et al.. Obstetric outcome of patients with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization-embryo transfer.  Fertil Steril. 2005;  83 1461-1465
  • 156 Mikkelsen A L. Strategies in human in-vitro maturation and their clinical outcome.  Reprod Biomed Online. 2005;  10 593-599
  • 157 Ellenbogen A, Michaely M, Peer S, Ballas S. The incidence of polyploid fertilization in patients with and without polycystic ovaries: is it a possible cause of early abortions?.  Fertil Steril. 2002;  78 (suppl) 185-186
  • 158 Copperman A B, Applebaum H, Osborne D, Mukherjee T. The egg or the endometrium: why do PCO patients have higher rates of miscarriage?.  Fertil Steril. 2000;  74 (Suppl) 101
  • 159 Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland M P. Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns.  Reprod Domest Anim. 2003;  38 259-267

Jeremy G ThompsonPh.D. 

The Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide

South Australia 5005, Australia

Email: jeremy.thompson@adelaide.edu.au

    >