Int J Sports Med 2008; 29(2): 134-138
DOI: 10.1055/s-2007-964995
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Validity of the Polar S810 to Measure R-R Intervals in Children

F.-X. Gamelin1 , G. Baquet1 , S. Berthoin1 , L. Bosquet2
  • 1Laboratoire d'Etudes de la Motricité Humaine, Faculté des Sciences du Sport et de l'Education Physique, Université de Lille 2, Ronchin, France
  • 2Département de Kinésiologie, Université de Montréal, Montréal, Canada
Further Information

Publication History

accepted after revision August 8, 2006

Publication Date:
05 July 2007 (online)

Abstract

Intervals between two consecutive cardiac beats (R‐R intervals) and the subsequent analysis of heart rate variability (HRV) obtained simultaneously from the Polar S810 heart rate monitor (HRM) and an electrocardiogram (ECG) in a supine position were compared in twelve children (age 9.6 ± 0.9 years) before and after protocol correction. R‐R intervals were significantly different between the ECG and the HRM uncorrected and corrected signal (p < 0.001, effect size [ES] = 0.005, and 0.005, respectively). However, the bias (95 % confidence interval) was 0.80 (- 124.76 - 123.16) ms and 0.80 (- 12.76 - 11.16) ms, respectively. HRV parameters derived from both signals were not different (p > 0.05) and well correlated (r > 0.99, p < 0.05), except SD2 (p < 0.05, ES = 0.000; r = 0.99). These data support the validity of the Polar S810 HRM to measure R‐R intervals and make the subsequent HRV analysis in a supine position in children.

References

  • 1 Baugmarter T A. Norm-referenced measurment: reliability. Safrit MJ, Wood TM Measurement Concepts in Physical Education and Exercise Science. Champaign, IL; Human Kinetics 1989: 45-72
  • 2 Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability?.  IEEE Trans Biomed Eng. 2001;  48 1342-1347
  • 3 Cohen (ed) J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale; Lawrence Erlbaum Associates 1988
  • 4 Dishman R K, Nakamura Y, Garcia M E, Thompson R W, Dunn A L, Blair S N. Heart rate variability, trait anxiety, and perceived stress among physically fit men and women.  Int J Psychophysiol. 2000;  37 121-133
  • 5 Friedman B H, Thayer J F. Autonomic balance revisited: panic anxiety and heart rate variability.  J Psychosom Res. 1998;  44 133-151
  • 6 Gutin B, Barbeau P, Litaker M S, Ferguson M, Owens S. Heart rate variability in obese children: relations to total body and visceral adiposity, and changes with physical training and detraining.  Obes Res. 2000;  8 12-19
  • 7 Javorka M, Javorkova J, Tonhajzerova I, Calkovska A, Javorka K. Heart rate variability in young patients with diabetes mellitus and healthy subjects explored by Poincare and sequence plots.  Clin Physiol Funct Imaging. 2005;  25 119-127
  • 8 Kingsley M, Lewis M J, Marson R E. Comparison of Polar 810 s and an ambulatory ECG system for RR Interval measurement during progressive exercise.  Int J Sports Med. 2005;  26 39-44
  • 9 Kinnunen H, Heikkila I. The timing accuracy of the Polar Vantage NV heart rate monitor.  J Sports Sci. 1998;  16 (Suppl) S107-S110
  • 10 Marchant-Forde R M, Marlin D J, Marchant-Forde J N. Validation of a cardiac monitor for measuring heart rate variability in adult female pigs: accuracy, artefacts and editing.  Physiol Behav. 2004;  80 449-458
  • 11 Massin M, von Bernuth G. Clinical and haemodynamic correlates of heart rate variability in children with congenital heart disease.  Eur J Pediatr. 1998;  157 967-971
  • 12 Molgaard H, Sorensen K E, Bjerregaard P. Attenuated 24-h heart rate variability in apparently healthy subjects, subsequently suffering sudden cardiac death.  Clin Auton Res. 1991;  1 233-237
  • 13 Mourot L, Bouhaddi M, Perrey S, Rouillon J D, Regnard J. Quantitative Poincare plot analysis of heart rate variability: effect of endurance training.  Eur J Appl Physiol. 2004;  91 79-87
  • 14 Radespiel-Troger M, Rauh R, Mahlke C, Gottschalk T, Muck-Weymann M. Agreement of two different methods for measurement of heart rate variability.  Clin Auton Res. 2003;  13 99-102
  • 15 Ruha A, Sallinen S, Nissila S. A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV.  IEEE Trans Biomed Eng. 1997;  44 159-167
  • 16 Tanner J M. Growth at Adolescence. 2nd edn. Oxford; Blackwell Scientific Publications 1962: 325
  • 17 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology . Heart rate variability: standards of measurement, physiological interpretation and clinical use.  Circulation. 1996;  93 1043-1065
  • 18 Thomas J R, Nelson J K. Research Methods in Physical Activity. Champaign, IL; Human Kinetics 2001
  • 19 Tsuji H, Venditti Jr F J, Manders E S, Evans J C, Larson M G, Feldman C L, Levy D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study.  Circulation. 1994;  90 878-883
  • 20 Tulppo M P, Makikallio T H, Takala T E, Seppanen T, Huikuri H V. Quantitative beat-to-beat analysis of heart rate dynamics during exercise.  Am J Physiol. 1996;  271 H244-H252
  • 21 Winsley R J, Armstrong N, Bywater K, Fawkner S G. Reliability of heart rate variability measures at rest and during light exercise in children.  Br J Sports Med. 2003;  37 550-552

François-Xavier Gamelin

Laboratoire d'Etudes de la Motricité Humaine
Faculté des Sciences du Sport et de l'Education Physique
Université de Lille 2

9 rue de l'Université

59790 Ronchin

France

Phone: + 33 3 20 88 73 54

Fax: + 33 3 20 88 73 63

Email: francois-xavier.gamelin@etu.univ-lille2.fr

    >