Fortschr Neurol Psychiatr 2007; 75(10): 579-585
DOI: 10.1055/s-2007-959249
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Proteomics - Biomarkerforschung in der Psychiatrie

Proteomics: Biomarker Research in PsychiatryR.  Hünnerkopf1 , J.  Grassl1 , J.  Thome1
  • 1Department of Psychiatry, The School of Medicine, University of Wales Swansea (Chair: Prof. Dr. Dr. J. Thome)
Further Information

Publication History

Publication Date:
13 June 2007 (online)

Zusammenfassung

Durch die Genforschung („Genomics”) konnten in den letzten Jahrzehnten wichtige Erkenntnisse zu grundlegenden physiologischen und pathophysiologischen Prozessen gewonnen werden, die für die Psychiatrie relevant sind. Dadurch entstanden auch Hoffnungen für baldige klinische Anwendungsmöglichkeiten. Leider konnte die Genforschung jedoch bisher diesen hohen Erwartungen (z. B. im Hinblick auf diagnostische und therapeutische Optionen) nicht gerecht werden. Zunehmend wird klar, dass auch Prozesse wie alternatives Splicen der RNA und posttranslationale Modifikationen, die aus einem einzelnen Gen eine Vielzahl an Genprodukten entstehen lassen, beachtet werden müssen. Darüber hinaus spielen auch Signaltransduktionswege und Interaktionen von verschiedenen funktionellen Netzwerken im Gehirn eine wichtige Rolle, die nicht nur auf DNA- und RNA- sondern auch auf Protein-Ebene untersucht werden müssen. Dieser Notwendigkeit wird in der modernen Proteomforschung („Proteomics”) Rechnung getragen. Zur Anwendung kommen hier massenspektrometrische Methoden, um das Expressionsniveau von Proteinen, posttranslationale Modifikationen und Protein-Protein-Interaktionen zu erforschen. Durch solche proteomanalytischen Untersuchungen können in automatisierter Weise und unter einem hohen Durchsatz von Proben („high throughput”) Proteinmuster in postmortem-Gewebe, im Liquor oder Serum quantitativ und qualitativ bestimmt werden. So können wichtige neue Erkenntnisse auch zur Ätiopathogenese neuropsychiatrischer Erkrankungen gewonnen werden. Indem Proteinprofile von Patienten mit denen von gesunden Kontrollpersonen verglichen werden, ist es möglich, diagnostische und prognostische Biomarker zu identifizieren. Zusätzlich erleichtert die proteomanalytische Untersuchung von Medikamenteneffekten in vitro und in vivo die Entwicklung spezifischer und nebenwirkungsarmer Medikamente. In diesem Beitrag werden häufig verwendete proteomanalytische Techniken sowie Chancen und Limitationen dieser Methoden vorgestellt. Weiterhin werden die bisherigen Ergebnisse proteomanalytischer Studien zu klassischen neuropsychiatrischen Erkrankungen (Alzheimer-Demenz, Suchterkrankungen, Schizophrenie, Angsterkrankungen, Depression) zusammengefasst.

Abstract

Over the last decade, genomics research in psychiatry and neuroscience has provided important insights into genes expressed under different physiological and pathophysiological conditions. Contrary to the great expectations regarding a clinical use of these datasets, genomics failed to improve markedly the diagnostic and therapeutic options in brain disorders. Due to alternative splicing and posttranslational modifications, one single gene determines a multitude of gene products. Therefore, in order to understand molecular processes in neuropsychiatric disorders, it is necessary to unravel signal transduction pathways and complex interaction networks on the level of proteins, not only DNA and mRNA. Proteomics utilises high-throughput mass spectrometric protein identification that can reveal protein expression levels, posttranslational modifications and protein-protein interactions. Proteomic tools have the power to identify quantitative and qualitative protein patterns in postmortem brain tissue, cerebrospinal fluid (CSF) or serum, thus increasing the knowledge about etiology and pathomechanisms of brain diseases. Comparing protein profiles in healthy and disease states provides an opportunity to establish specific diagnostic and prognostic biomarkers. In addition, proteomic studies of the effects of medication - in vitro and in vivo - might help to design specific pharmaceutical agents with fewer side effects. In this overview, we present the most widely used proteomic techniques and illustrate the potential and limitations of this field of research. Furthermore, we provide insight into the contributions of proteomics to the study of psychiatric diseases such as Alzheimer's disease, drug addiction, schizophrenia and depression.

Literatur

  • 1 Takahashi N, Hashida H, Zhao N, Misumi Y, Sakaki Y. High-density cDNA filter analysis of the expression profiles of the genes preferentially expressed in human brain.  Gene. 1995;  164 219-277
  • 2 Fountoulakis M. Application of proteomics technologies in the investigation of the brain.  Mass Spectrom Rev. 2004;  23 231-258
  • 3 Becker M, Schindler J, Nothwang H G. Neuroproteomics - the tasks lying ahead.  Electrophoresis. 2006;  27 2819-2829
  • 4 Choudhary J, Grant S G. Proteomics in postgenomic neuroscience: the end of the beginning.  Nat Neurosci. 2004;  7 440-445
  • 5 Fountoulakis M, Kossida S. Proteomics-driven progress in neurodegeneration research.  Electrophoresis. 2006;  27 1556-1573
  • 6 Grant S G, Blackstock W P. Proteomics in neuroscience: from protein to network.  J Neurosci. 2001;  21 8315-8318
  • 7 Grant S G, Husi H. Proteomics of multiprotein complexes: answering fundamental questions in neuroscience.  Trends Biotechnol. 2001;  19 49-54
  • 8 Husi H, Grant S G. Proteomics of the nervous system.  Trends Neurosci. 2001;  24 259-266
  • 9 Kim S Y, Chudapongse N, Lee S M, Levin M C, Oh J T, Park H J, Ho I K. Proteomic analysis of phosphotyrosyl proteins in the rat brain: effect of butorphanol dependence.  J Neurosci Res. 2004;  77 867-877
  • 10 Lubec G, Krapfenbauer K, Fountoulakis M. Proteomics in brain research: potentials and limitations.  Prog Neurobiol. 2003;  69 193-211
  • 11 Freeman W M, Hemby S E. Proteomics for protein expression profiling in neuroscience.  Neurochem Res. 2004;  29 1065-1081
  • 12 Paulson L, Persson R, Karlsson G, Silberring J, Bierczynska-Krzysik A, Ekman R, Westman-Brinkmalm A. Proteomics and peptidomics in neuroscience. Experience of capabilities and limitations in a neurochemical laboratory.  J Mass Spectrom. 2005;  40 202-213
  • 13 Pennington K, Cotter D, Dunn M J. The role of proteomics in investigating psychiatric disorders.  Br J Psychiatry. 2005;  187 4-6
  • 14 Vercauteren F G, Bergeron J J, Vandesande F, Arckens L, Quirion R. Proteomic approaches in brain research and neuropharmacology.  Eur J Pharmacol. 2004;  500 385-398
  • 15 Beasley C L, Pennington K, Behan A. et al . Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes.  Proteomics. 2006;  6 3414-3425
  • 16 Johnston-Wilson N L, Sims C D, Hofmann J P. et al . Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium.  Mol Psychiatry. 2000;  5 142-149
  • 17 Prabakaran S, Swatton J E, Ryan M M. et al . Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress.  Mol Psychiatry. 2004;  9 684-697, 643
  • 18 de Noo M E, Mertens B J, Ozalp A. et al . Detection of colorectal cancer using MALDI-TOF serum protein profiling.  Eur J Cancer. 2006;  42 1068-1076
  • 19 Jiang L, Lindpaintner K, Li H F, Gu N F, Langen H, He L, Fountoulakis M. Proteomic analysis of the cerebrospinal fluid of patients with schizophrenia.  Amino Acids. 2003;  25 49-57
  • 20 Kim S I, Voshol H, Oostrum J van, Hastings T G, Cascio M, Glucksman M J. Neuroproteomics: expression profiling of the brain’s proteomes in health and disease.  Neurochem Res. 2004;  29 1317-1331
  • 21 Aebersold R, Mann M. Mass spectrometry-based proteomics.  Nature. 2003;  422 198-207
  • 22 Morris C M, Wilson K E. High throughput approaches in neuroscience.  Int J Dev Neurosci. 2004;  22 515-522
  • 23 Domon B, Aebersold R. Mass spectrometry and protein analysis.  Science. 2006;  312 212-217
  • 24 Butterfield D A. Proteomics: a new approach to investigate oxidative stress in Alzheimer's disease brain.  Brain Res. 2004;  1000 1-7
  • 25 Butterfield D A, Boyd-Kimball D. Proteomics analysis in Alzheimer's disease: new insights into mechanisms of neurodegeneration.  Int Rev Neurobiol. 2004;  61 159-188
  • 26 Butterfield D A, Boyd-Kimball D, Castegna A. Proteomics in Alzheimer's disease: insights into potential mechanisms of neurodegeneration.  J Neurochem. 2003;  86 1313-1327
  • 27 Ho L, Sharma N, Blackman L, Festa E, Reddy G, Pasinetti G M. From proteomics to biomarker discovery in Alzheimer's disease.  Brain Res Brain Res Rev. 2005;  48 360-369
  • 28 Sultana R, Poon H F, Cai J, Pierce W M, Merchant M, Klein J B, Markesbery W R, Butterfield D A. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach.  Neurobiol Dis. 2006;  22 76-87
  • 29 Butterfield D A, Perluigi M, Sultana R. Oxidative stress in Alzheimer's disease brain: New insights from redox proteomics.  Eur J Pharmacol. 2006;  545 39-50
  • 30 Korolainen M A, Goldsteins G, Nyman T A, Alafuzoff I, Koistinaho J, Pirttila T. Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain.  Neurobiol Aging. 2006;  27 42-53
  • 31 Schonberger S J, Edgar P F, Kydd R, Faull R L, Cooper G J. Proteomic analysis of the brain in Alzheimer's disease: molecular phenotype of a complex disease process.  Proteomics. 2001;  1 1519-1528
  • 32 Yoo B C, Cairns N, Fountoulakis M, Lubec G. Synaptosomal proteins, beta-soluble N-ethylmaleimide-sensitive factor attachment protein (beta-SNAP), gamma-SNAP and synaptotagmin I in brain of patients with Down syndrome and Alzheimer's disease.  Dement Geriatr Cogn Disord. 2001;  12 219-225
  • 33 Carrette O, Demalte I, Scherl A, Yalkinoglu O, Corthals G, Burkhard P, Hochstrasser D F, Sanchez J C. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer's disease.  Proteomics. 2003;  3 1486-1494
  • 34 Castano E M, Roher A E, Esh C L, Kokjohn T A, Beach T. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer's disease and non-demented elderly subjects.  Neurol Res. 2006;  28 155-163
  • 35 Vercauteren F G, Clerens S, Roy L, Hamel N, Arckens L, Vandesande F, Alhonen L, Janne J, Szyf M, Cuello A C. Early dysregulation of hippocampal proteins in transgenic rats with Alzheimer's disease-linked mutations in amyloid precursor protein and presenilin 1.  Brain Res Mol Brain Res. 2004;  132 241-259
  • 36 Sizova D, Charbaut E, Delalande F, Poirier F, High A A, Parker F, Dorsselaer A van, Duchesne M, Diu-Hercend A. Proteomic analysis of brain tissue from an Alzheimer's disease mouse model by two-dimensional difference gel electrophoresis.  Neurobiol Aging. 2006;  28 357-310
  • 37 Nomura F, Tomonaga T, Sogawa K, Ohashi T, Nezu M, Sunaga M, Kondo N, Iyo M, Shimada H, Ochiai T. Identification of novel and downregulated biomarkers for alcoholism by surface enhanced laser desorption/ionization-mass spectrometry.  Proteomics. 2004;  4 1187-1194
  • 38 Alexander-Kaufman K, James G, Sheedy D, Harper C, Matsumoto I. Differential protein expression in the prefrontal white matter of human alcoholics: a proteomics study.  Mol Psychiatry. 2006;  11 56-65
  • 39 Kim S Y, Chudapongse N, Lee S M, Levin M C, Oh J T, Park H J, Ho I K. Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains.  Brain Res Mol Brain Res. 2005;  133 58-70
  • 40 Prokai L, Zharikova A D, Steven Jr S M. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry.  J Mass Spectrom. 2005;  40 169-175
  • 41 Clark D, Dedova I, Cordwell S, Matsumoto I. A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia.  Mol Psychiatry. 2006;  11 459-470
  • 42 Novikova S I, He F, Cutrufello N J, Lidow M S. Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI-TOF-MS ProteinChip profiling combined with MALDI-TOF-PSD-MS analysis.  Neurobiol Dis. 2006;  23 61-76
  • 43 Yang Y, Wan C, Li H, Zhu H, La Y, Xi Z, Chen Y, Jiang L, Feng G, He L. Altered levels of acute phase proteins in the plasma of patients with schizophrenia.  Anal Chem. 2006;  78 3571-3576
  • 44 Paulson L, Martin P, Ljung E, Blennow K, Davidsson P. Effects on rat thalamic proteome by acute and subchronic MK-801-treatment.  Eur J Pharmacol. 2004;  505 103-109
  • 45 Paulson L, Martin P, Persson A, Nilsson C L, Ljung E, Westman-Brinkmalm A, Eriksson P S, Blennow K, Davidsson P. Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats.  J Neurosci Res. 2003;  71 526-533
  • 46 Kromer S A, Kessler M S, Milfay D, Birg I N, Bunck M, Czibere L, Panhuysen M, Putz B, Deussing J M, Holsboer F, Landgraf R, Turck C W. Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety.  J Neurosci. 2005;  25 4375-4384
  • 47 Khawaja X, Xu J, Liang J J, Barrett J E. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies.  J Neurosci Res. 2004;  75 451-460
  • 48 Brunner J, Bronisch T, Uhr M, Ising M, Binder E, Holsboer F, Turck C W. Proteomic analysis of the CSF in unmedicated patients with major depressive disorder reveals alterations in suicide attempters.  Eur Arch Psychiatry Clin Neurosci. 2005;  255 438-440
  • 49 Kapp E A, Schutz F, Connolly L M, Chakel J A, Meza J E, Miller C A, Fenyo D, Eng J K, Adkins J N, Omenn G S, Simpson R J. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis.  Proteomics. 2005;  5 3475-3490
  • 50 Hamacher M, Meyer H E. HUPO Brain Proteome Project: aims and needs in proteomics.  Expert Rev Proteomics. 2005;  2 1-3

Prof. Dr. med. Dr. phil. J. Thome

Psychiatry Unit, The School of Medicine

Grove Building (113)

Singleton Park

Swansea SA2 8PP

United Kingdom

Email: j.thome@swan.ac.uk

    >