Minim Invasive Neurosurg 2006; 49(5): 269-275
DOI: 10.1055/s-2006-954574
Original Article

© Georg Thieme Verlag KG · Stuttgart · New York

Optical Coherence Tomography for Experimental Neuroendoscopy

H. J. Böhringer 1 , E. Lankenau 2 , V. Rohde 1 , G. Hüttmann 2 , A. Giese 1
  • 1Department of Neurosurgery, Georg-August-University of Göttingen, Göttingen, Germany
  • 2Institute for Biomedical Optics, University of Lübeck, Lübeck, Germany
Further Information

Publication History

Publication Date:
12 December 2006 (online)

Abstract

Optical coherence tomography (OCT) is a non-invasive and non-contact imaging technology that has been applied to several biomedical applications. We have recently demonstrated that OCT allows discrimination of tumor adjacent brain, diffuse and solid tumor tissue and that this technology may be used to detect residual tumor within the resection cavity during resection of intrinsic brain tumors. Here we show that an OCT integrated endoscope can image the endoventricular anatomy and other endoscopically accessible structures in a human brain specimen. A Sirius 713 optical coherence tomography device was mounted to a modified rigid endoscope. A formalin-fixed human brain specimen was used to simulate endoscopic visualization of brain anatomy and two specimens of fixed malignant tumors with endoventricular growth patterns. Simultaneous OCT imaging and endoscopic video imaging of the visible spectrum was possible using a graded index rod endoscope. OCT imaging of a human brain specimen in water allowed an in-depth view into structures like the walls of the ventricular system, the choroid plexus or the thalamostriatal vein. OCT further allowed imaging of structures beyond tissue barriers or opaque media. In this fixed specimen OCT allowed discrimination of vascular structures down to a diameter of 50 μm. In vessels larger that 100 μm the lumen could be discriminated and within larger blood vessels a layered structure of the vascular wall as well as endovascular plaques could be visualized. This in vitro pilot study has demonstrated that OCT integrated into neuroendoscopes may add information that cannot be obtained by the video imaging alone. This technology may provide an extra margin of safety by providing cross-sectional images of tissue barriers within optically opaque conditions.

References

  • 1 Welzel J, Reinhardt C, Lankenau E, Winter C, Wolff HH. Changes in function and morphology of normal human skin: evaluation using optical coherence tomography.  Br J Dermatol. 2004;  150 220-225
  • 2 Giese A, Böhringer HJ, Leppert J, Kantelhardt SR, Lankenau E, Koch P, Hüttmann G. Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors.  Spie Bios. 2006;  , in press
  • 3 Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG. Optical biopsy in human urologic tissue using optical coherence tomography.  J Urol. 1997;  157 1915-1919
  • 4 Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG. In vivo endoscopic optical biopsy with optical coherence tomography.  Science. 1997;  276 2037-2039
  • 5 Daniltchenko D, Konig F, Lankenau E, Sachs M, Kristiansen G, Huettmann G, Schnorr D. Utilizing optical coherence tomography (OCT) for visualization of urothelial diseases of the urinary bladder.  Radiologe. 2005;  , Aug 6 [Epub ahead of print]
  • 6 Zagaynova EV, Streltsova OS, Gladkova ND, Snopova LB, Gelikonov GV, Feldchtein FI, Morozov AN. In vivo optical coherence tomography feasibility for bladder disease.  J Urol. 2002;  167 1492-1496
  • 7 Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG. Imaging of macular diseases with optical coherence tomography.  J Biomed Opt. 2004;  9 47-74
  • 8 Bouma BE, Tearney GJ, Compton CC, Nishioka NS. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography.  Gastrointestinal Endoscopy. 2000;  51 467-474
  • 9 Böhringer HJ, Boller D, Leppert J, Knopp U, Lankenau E, Reusche E, Hüttmann G, Giese A. Time domain and spectral domain optical coherence tomography in the analysis of brain tumor tissue.  Lasers in Surgery and Medicine. in press 2006; 
  • 10 Bizheva K, Unterhuber A, Hermann B, Povazay B, Sattmann H, Drexler W, Stingl A, Le T, Mei M, Holzwarth R, Reitsamer HA, Morgan JE, Cowey A. Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography.  J Biomed Opt. 2004;  9 719-724
  • 11 Böhringer HJ, Leppert J, Lankenau E, Reusche E, Hüttmann G, Giese A. Analysis of human brain tumor tissue by optical coherence tomography.  2005;  , submitted
  • 12 Böhringer HJ, Leppert J, Wüstenberg R, Bodensteiner C, Reusche E, Stellmacher F, Lankenau E, Winter C, Koch P, Hüttmann G, Giese A. Analysis of glioma tissue by high resolution spectral-domain optical coherence tomography.  2005;  , submitted
  • 13 Brand S, Poneros JM, Bouma BE, Teamey GJ, Compton CC, Nishioka NS. Optical coherence tomography in the gastrointestinal tract.  Endoscopy. 2000;  32 796-803
  • 14 Tomlins PH, Wang RK. Theory, development and applications of optical coherence tomography.  J Phys D: Appl Phys. 2005;  38 2519-2535
  • 15 Zhao Y, Chen Z, Saxer C, Xiang S, de Boer JF, Nelson S. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity.  Optics Letters. 2000;  25 114-116

Correspondence

Alf GieseM.D. 

Department of Neurosurgery

Georg-August-University of Göttingen

Robert-Koch-Straße 40

37075 Göttingen

Germany

Phone: +49/551/39 60 33

Fax: +49/551/39 87 94

Email: alf.giese@med.uni-goettingen.de

    >