Anästhesiol Intensivmed Notfallmed Schmerzther 2005; 40(3): 164-172
DOI: 10.1055/s-2005-861042
Originalie
© Georg Thieme Verlag KG Stuttgart · New York

Aktivierung von Granulozyten und Antiproteasen bei herzchirurgischen Eingriffen mit extrakorporaler Zirkulation

Activation of Granulocytes and Antiproteases in Open Heart SurgeryI.  D.  Welters1 , J.  Hirsch1 , A.  Menzebach1 , G.  Hempelmann1 , M.  Müller1
  • 1Abteilung für Anaesthesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Gießen
Further Information

Publication History

Publication Date:
16 March 2005 (online)

Zusammenfassung

Ziel der Studie: Eingriffe am offenen Herzen unter extrakorporaler Zirkulation (EKZ) induzieren die Aktivierung von neutrophilen Granulozyten. Die Freisetzung von Proteasen und reaktiven Sauerstoffmetaboliten im Rahmen dieser Aktivierung kann eine kausale Rolle bei der Entstehung von Krankheitsprozessen in der postoperativen Phase darstellen, wenn die körpereigenen Schutzmechanismen durch Antiproteasen und Antioxidanzien dabei überwunden werden. In dieser Studie wurde deshalb der Einfluss von herzchirurgischen Eingriffen mit EKZ auf die Mediatoren neutrophiler Granulozyten untersucht. Es wurden die Plasmaspiegel von Neutrophiler Elastase (NE) und ihren Inhibitoren α1-Proteinase-Inhibitor (API) und Secretory Leukocyte Proteinase Inhibitor (SLPI) bestimmt. Weiterhin wurden Phagozytoseaktivität und Oxidativer Burst ermittelt. Zur Quantifizierung der Gewebedestruktion wurde die Konzentration an Fibronektin im Serum bestimmt. Methodik: Blutproben von 30 Patienten, die sich einer aortokoronaren Bypass-Operation unterzogen, wurden zu definierten Zeitpunkten vor, während und nach der Operation gewonnen. Die API- und Fibronektin-Plasmaspiegel wurden nephelometrisch, die SLPI- und NE-Konzentrationen mittels ELISA bestimmt. Die Bestimmung von Phagozytoseaktivität und Oxidativem Burst in neutrophilen Granulozyten erfolgte mittels Durchflusszytometrie. Ergebnisse: Während die Plasmaspiegel von NE während der EKZ signifikant (245 ± 107 µg/ml versus 44 ± 14 µg/ml nach Narkoseeinleitung, p < 0,001) erhöht waren, kam es zu einem Abfall der API- und SLPI-Konzentrationen in diesem Zeitraum. Im Vergleich zu den Ausgangswerten waren API (3 ± 0,5 g/l versus 1,6 ± 0,3 g/l, p < 0,05) und SLPI (54 ± 17 ng/ml versus 41 ± 10 ng/ml, p < 0,05) in der postoperativen Phase erhöht. Die Phagozytoseaktivität war während der EKZ nur geringfügig erhöht, der Oxidative Burst zeigte ebenfalls keine signifikanten Änderungen. Schlussfolgerung: Kardiochirurgische Eingriffe unter Einsatz der EKZ induzieren eine signifikante Freisetzung von NE bei fehlendem Anstieg der Proteaseinhibitoren. Die Dysbalance zwischen NE und den Antagonisten API und SLPI könnte gewebeschädigende Effekte durch aktivierte Granulozyten nach herzchirurgischen Eingriffen begünstigen.

Abstract

Objective: Cardiovascular surgical procedures with extracorporeal circulation (ECC) lead to neutrophil activation followed by the release of proteases such as neutrophil elastase (NE) and oxidants. The misbalance between proteases and their physiological inhibitors may contribute to morbidity in the postoperative period. In this study, the effects of cardiac surgery on neutrophil mediators were evaluated. Release of neutrophil elastase and plasma levels of the natural NE antagonists α1-proteinase inhibitor (API) and secretory leukocyte proteinase inhibitor (SLPI) were measured. The oxidative burst and the phagocytic activity were also evaluated. Tissue destruction was quantified by measuring the serum concentration of fibronectin. Methods: Blood samples were obtained from 30 patients undergoing elective coronary artery bypass grafting (n = 30). NE and SLPI concentrations were measured by ELISA, API and fibronectin plasma levels were determined by nephelometry. Neutrophil phagocytic activity and oxidative burst were evaluated by flow cytometry. Results: Neutrophil elastase plasma concentrations rose during ECC (245 ± 107 µg/ml versus 44 ± 14 µg/ml after induction, p < 0.001), whereas SLPI and API were decreased after onset of ECC. 24 h after ECC SLPI (54 ± 17 ng/ml versus 41 ± 10 ng/ml, p < 0.05) and API (3 ± 0.5 g/l versus 1.6 ± 0.3 g/l, p < 0.05) increased significantly compared to baseline values. A minor increase in phagocytic activity was observed after the onset of ECC. There were no significant changes in the oxidative burst. Conclusion: Cardiac surgery with ECC leads to neutrophil activation and elastase release. The imbalance between NE and the NE inhibitors API and SLPI may increase the risk for tissue damage due to granulocyte activation after cardiac surgery.

Literatur

  • 1 Welters I, Menges T, Ballesteros M, Sablotzki A, Gorlach G, Hempelmann G. Acute phase and opsonin response in cardiac surgery patients: influence of underlying cardiac disease.  Perfusion. 1998;  13 447-454
  • 2 Martin R, McKenty S, Thisdale Y, Lavallee P, Teijeira J, Bonneau D, Tetrault J P. Hemolysis during cardiopulmonary bypass.  J Cardiothorac Anesth. 1989;  3 737-740
  • 3 Butler J, Rocker G M, Westaby S. Inflammatory response to cardiopulmonary bypass.  Ann Thorac Surg. 1993;  55 552-559
  • 4 Nilsson L, Brunnkvist S, Nilsson U, Nystrom S O, Tyden H, Venge P, Aberg T. Activation of inflammatory systems during cardiopulmonary bypass.  Scand J Thorac Cardiovasc Surg. 1988;  22 51-53
  • 5 Howard R J, Crain C, Franzini D A, Hood C I, Hugli T E. Effects of cardiopulmonary bypass on pulmonary leukostasis and complement activation.  Arch Surg. 1988;  123 1496-1501
  • 6 Hirsch J, Elssner A, Mazur G, Maier K L, Bittmann I, Behr J, Schwaiblmair M, Reichenspurner H, Furst H, Briegel J, Vogelmeier C. Bronchiolitis obliterans syndrome after (heart-)lung transplantation. Impaired antiprotease defense and increased oxidant activity.  Am J Respir Crit Care Med. 1999;  160 1640-1646
  • 7 Braun J, Dalhoff K, Schaaf B, Wood W G, Wiessmann K J. Characterization of protein-antiproteinase imbalance in bronchoalveolar lavage from patients with pneumonia.  Eur Respir J. 1994;  7 127-133
  • 8 Sallenave J M, Si-Ta h M, Cox G, Chignard M, Gauldie J. Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils.  J Leukoc Biol. 1997;  61 695-702
  • 9 Welters I D, Spangenberg U, Menzebach A, Engel J, Menges T, Langefeld T W, Hempelmann G. Der Einfluss verschiedener Volumenersatzmittel auf die Funktion von neutrophilen Granulozyten in vitro.  Anaesthesist. 2000;  49 196-201
  • 10 Levy J H, Tanaka K A. Inflammatory response to cardiopulmonary bypass.  Ann Thorac Surg. 2003;  75 S715-S720
  • 11 el Habbal M H, Smith L J, Elliott M J, Strobel S. Cardiopulmonary bypass tubes and prime solutions stimulate neutrophil adhesion molecules.  Cardiovascular Research. 1997;  33 209-215
  • 12 Koster A, Fischer T, Praus M, Haberzettl H, Kuebler W M, Hetzer R, Kuppe H. Hemostatic activation and inflammatory response during cardiopulmonary bypass: impact of heparin management.  Anesthesiology. 2002;  97 837-841
  • 13 Grobmyer S R, Barie P S, Nathan C F, Fuortes M, Lin E, Lowry S F, Wright C D, Weyant M J, Hydo L, Reeves F, Shiloh M U, Ding A. Secretory leukocyte protease inhibitor, an inhibitor of neutrophil activation, is elevated in serum in human sepsis and experimental endotoxemia.  Crit Care Med. 2000;  28 1276-1282
  • 14 Fryksmark U, Prellner T, Tegner H, Ohlsson K. Studies on the role of antileukoprotease in respiratory tract diseases.  Eur J Respir Dis. 1984;  65 201-209
  • 15 Kida K, Mizuuchi T, Takeyama K, Hiratsuka T, Jinno S, Hosoda K, Imaizumi A, Suzuki Y. Serum secretory leukoprotease inhibitor levels to diagnose pneumonia in the elderly.  Am Rev Respir Dis. 1992;  146 1426-1429
  • 16 Maruyama M, Hay J G, Yoshimura K, Chu C S, Crystal R G. Modulation of secretory leukoprotease inhibitor gene expression in human bronchial epithelial cells by phorbol ester.  J Clin Invest. 1994;  94 368-375
  • 17 Jin F Y, Nathan C, Radzioch D, Ding A. Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide.  Cell. 1997;  88 417-426
  • 18 Taggart C C, Greene C M, McElvaney N G, O’Neill S. Secretory leucoprotease inhibitor prevents lipopolysaccharide-induced κ B α degradation without affecting phosphorylation or ubiquitination.  J Biol Chem. 2002;  277 33 648-33 653
  • 19 Fritz H. Human mucus proteinase inhibitor (human MPI). Human seminal inhibitor I (HUSI-I), antileukoprotease (ALP), secretory leukocyte protease inhibitor (SLPI).  Biol Chem Hoppe Seyler. 1988;  369 Suppl 79-82
  • 20 Hubbard R C, Crystal R G. Vulnerability of the lung to proteolytic injury. In: Crystal RG, West JB (eds) The Lung. New York; Raven Press Ltd 1991: 2059-2072
  • 21 deWater R, Willems L N, VanMuijen G N, Franken C, Fransen J A, Dijkman J H, Kramps J A. Ultrastructural localization of bronchial antileukoprotease in central and peripheral human airways by a gold-labeling technique using monoclonal antibodies.  Am Rev Respir Dis. 1986;  133 882-890
  • 22 Morrison H M, Welgus H G, Stockley R A, Burnett D, Campbell E J. Inhibition of human leukocyte elastase bound to elastin: relative ineffectiveness and two mechanisms of inhibitory activity.  Am J Respir Cell Mol Biol. 1990;  2 263-269
  • 23 Rice W G, Weiss S J. Regulation of proteolysis at the neutrophil-substrate interface by secretory leukoprotease inhibitor.  Science. 1990;  249 178-181
  • 24 Llewellyn-Jones C G, Lomas D A, Stockley R A. Potential role of recombinant secretory leucoprotease inhibitor in the prevention of neutrophil mediated matrix degradation.  Thorax. 1994;  49 567-572
  • 25 Birrer P, McElvaney N G, Rudeberg A, Sommer C W, Liechti-Gallati S, Kraemer R, Hubbard R, Crystal R G. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis.  Am J Respir Crit Care Med. 1994;  150 207-213
  • 26 Meyer K C, Lewandoski J R, Zimmerman J J, Nunley D, Calhoun W J, Dopico G A. Human neutrophil elastase and elastase/alpha 1-antiprotease complex in cystic fibrosis. Comparison with interstitial lung disease and evaluation of the effect of intravenously administered antibiotic therapy.  Am Rev Respir Dis. 1991;  144 580-585
  • 27 Frass O M, Buhling F, Tager M, Frass H, Ansorge S, Huth C, Welte T. Antioxidant and antiprotease status in peripheral blood and BAL fluid after cardiopulmonary bypass.  Chest. 2001;  120 1599-1608
  • 28 Sibille Y, Lwebuga-Mukasa J S, Polomski L, Merrill W W, Ingbar D H, Gee J B. An in vitro model for polymorphonuclear-leukocyte-induced injury to an extracellular matrix. Relative contribution of oxidants and elastase to fibronectin release from amnionic membranes.  Am Rev Respir Dis. 1986;  134 134-140
  • 29 Hamano K, Ito H, Katoh T, Fujimura Y, Tsuboi H, Esato K. Granulocyte phagocytic function is impaired during cardiopulmonary bypass.  Ann Thorac Surg. 1996;  62 1820-1824
  • 30 Scholz M, Simon A, Matheis G, Dzemali O, Henrich D, Kleine P, Wimmer-Reinecker G, Moritz A. Leukocyte filtration fails to limit functional neutrophil activity during cardiac surgery.  Inflamm Res. 2002;  51 363-368
  • 31 Tarnok A, Bocsi J, Rossler H, Schlykow V, Schneider P, Hambsch J. Low degree of activation of circulating neutrophils determined by flow cytometry during cardiac surgery with cardiopulmonary bypass.  Cytometry. 2001;  46 41-49
  • 32 Biglioli P, Cannata A, Alamanni F, Naliato M, Porqueddu M, Zanobini M, Tremoli E, Parolari A. Biological effects of off-pump vs. on-pump coronary artery surgery: focus on inflammation, hemostasis and oxidative stress.  Eur J Cardiothorac Surg. 2003;  24 260-269
  • 33 Diegeler A, Tarnok A, Rauch T, Haberer D, Falk V, Battellini R, Autschbach R, Hambsch J, Schneider P, Mohr F W. Changes of leukocyte subsets in coronary artery bypass surgery: cardiopulmonary bypass versus ”off-pump” techniques.  Thorac Cardiovasc Surg. 1998;  46 327-332
  • 34 Diegeler A, Doll N, Rauch T, Haberer D, Walther T, Falk V, Gummert J, Autschbach R, Mohr F W. Humoral immune response during coronary artery bypass grafting: A comparison of limited approach, ”off-pump” technique, and conventional cardiopulmonary bypass.  Circulation. 2000;  102 (19, Suppl 3) III 95-100
  • 35 Ascione R, Lloyd C T, Underwood M J, Lotto A A, Pitsis A A, Angelini G D. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass.  Ann Thorac Surg. 2000;  69 1198-1204
  • 36 Matata B M, Sosnowski A W, Galinanes M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation.  Ann Thorac Surg. 2000;  69 785-791
  • 37 Al Ruzzeh S, Hoare G, Marczin N, Asimakopoulos G, George S, Taylor K, Amrani M. Off-pump coronary artery bypass surgery is associated with reduced neutrophil activation as measured by the expression of CD11b: a prospective randomized study.  Heart Surg Forum. 2003;  6 89-93
  • 38 Wehlin L, Vedin J, Vaage J, Lundahl J. Activation of complement and leukocyte receptors during on- and off pump coronary artery bypass surgery.  Eur J Cardiothorac Surg. 2004;  25 35-42

PD Dr. med. Ingeborg Welters

Abteilung für Anaesthesiologie und Operative Intensivmedizin, Klinikum der Justus-Liebig-Universität Gießen

Rudolf-Buchheim Straße 7 · 35385 Gießen ·

Email: Ingeborg.D.Welters@chiru.med.uni-giessen.de

    >