Semin Respir Crit Care Med 2004; 25(6): 629-644
DOI: 10.1055/s-2004-860986
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Methods of Monitoring Shock

Ednan K. Bajwa1 , Atul Malhotra2 , B. Taylor Thompson1
  • 1Massachusetts General Hospital, Pulmonary and Critical Care Unit, Boston, Massachusetts
  • 2Brigham & Women's Hospital, Boston, Massachusetts
Further Information

Publication History

Publication Date:
22 December 2004 (online)

ABSTRACT

Intensive monitoring is a crucial component of the management of shock. However, there is little consensus about optimal strategies for monitoring. Although the pulmonary artery catheter has been widely used, conflicting data exist about the utility of this device. A variety of other techniques have been developed in hopes of providing clinically useful information about myocardial function, intravascular volume, and indices of organ function. In addition, there is evolving evidence that targeting and monitoring certain physiological goals may be most important early in the course of shock. In this chapter, we examine many of the available monitoring techniques and the evidence supporting their use.

REFERENCES

  • 1 Zeni F, Freeman B, Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment.  Crit Care Med. 1997;  25 1095-1100
  • 2 Bernard G R, Vincent J L, Laterre P F et al.. Efficacy and safety of recombinant human activated protein C for severe sepsis.  N Engl J Med. 2001;  344 699-709
  • 3 Dellinger R P. Cardiovascular management of septic shock.  Crit Care Med. 2003;  31 946-955
  • 4 LeDoux D, Astiz M E, Carpati C M, Rackow E C. Effects of perfusion pressure on tissue perfusion in septic shock.  Crit Care Med. 2000;  28 2729-2732
  • 5 Dalen J E, Bone R C. Is it time to pull the pulmonary artery catheter?.  JAMA. 1996;  276 916-918
  • 6 Rivers E, Nguyen B, Havstad S et al.. Early goal-directed therapy in the treatment of severe sepsis and septic shock.  N Engl J Med. 2001;  345 1368-1377
  • 7 Parrillo J E, Parker M M, Natanson C et al.. Septic shock in humans: advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy.  Ann Intern Med. 1990;  113 227-242
  • 8 Schwartz D R, Malhotra A, Fink M. Cytopathic hypoxia in sepsis: an overview.  Sepsis. 1998;  2 279-289
  • 9 Fink M. Cytopathic hypoxia in sepsis.  Acta Anaesthesiol Scand Suppl. 1997;  110 87-95
  • 10 Gattinoni L, Brazzi L, Pelosi P et al.. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group.  N Engl J Med. 1995;  333 1025-1032
  • 11 Vincent J L, Dufaye P, Berre J et al.. Serial lactate determinations during circulatory shock.  Crit Care Med. 1983;  11 449-451
  • 12 Rame J E, Dries D L, Drazner M H. The prognostic value of the physical examination in patients with chronic heart failure.  Congest Heart Fail. 2003;  9 170-175 178
  • 13 Thomas J T, Kelly R F, Thomas S J et al.. Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure.  Am J Med. 2002;  112 437-445
  • 14 Kaplan L J, McPartland K, Santora T A, Trooskin S Z. Start with a subjective assessment of skin temperature to identify hypoperfusion in intensive care unit patients.  J Trauma. 2001;  50 620-627; , discussion 627-628
  • 15 Joly H R, Weil M H. Temperature of the great toe as an indication of the severity of shock.  Circulation. 1969;  39 131-138
  • 16 Connors Jr A F, McCaffree D R, Gray B A. Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction.  N Engl J Med. 1983;  308 263-267
  • 17 Poelaert J I, Trouerbach J, De Buyzere M, Everaert J, Colardyn F A. Evaluation of transesophageal echocardiography as a diagnostic and therapeutic aid in a critical care setting.  Chest. 1995;  107 774-779
  • 18 Slama M A, Novara A, Van de Putte P et al.. Diagnostic and therapeutic implications of transesophageal echocardiography in medical ICU patients with unexplained shock, hypoxemia, or suspected endocarditis.  Intensive Care Med. 1996;  22 916-922
  • 19 Sohn D W, Shin G J, Oh J K et al.. Role of transesophageal echocardiography in hemodynamically unstable patients.  Mayo Clin Proc. 1995;  70 925-931
  • 20 Goldman A P, Glover M U, Mick W et al.. Role of echocardiography/Doppler in cardiogenic shock: silent mitral regurgitation.  Ann Thorac Surg. 1991;  52 296-299
  • 21 Shephard J N, Brecker S J, Evans T W. Bedside assessment of myocardial performance in the critically ill.  Intensive Care Med. 1994;  20 513-521
  • 22 Muhiudeen I A, Kuecherer H F, Lee E, Cahalan M K, Schiller N B. Intraoperative estimation of cardiac output by transesophageal pulsed Doppler echocardiography.  Anesthesiology. 1991;  74 9-14
  • 23 Keyl C, Rodig G, Lemberger P, Hobbhahn J. A comparison of the use of transoesophageal Doppler and thermodilution techniques for cardiac output determination.  Eur J Anaesthesiol. 1996;  13 136-142
  • 24 Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F. Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography.  Am J Respir Crit Care Med. 2003;  168 1270-1276
  • 25 Singer M, Clarke J, Bennett E D. Continuous hemodynamic monitoring by esophageal Doppler.  Crit Care Med. 1989;  17 447-452
  • 26 Singer M, Bennett E D. Noninvasive optimization of left ventricular filling using esophageal Doppler.  Crit Care Med. 1991;  19 1132-1137
  • 27 Cariou A, Monchi M, Joly L M et al.. Noninvasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system.  Crit Care Med. 1998;  26 2066-2072
  • 28 Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial.  BMJ. 1997;  315 909-912
  • 29 Birman H, Haq A, Hew E, Aberman A. Continuous monitoring of mixed venous oxygen saturation in hemodynamically unstable patients.  Chest. 1984;  86 753-756
  • 30 Schmidt C R, Frank L P, Forsythe S B, Estafanous F G. Continuous S-vO2 measurement and oxygen transport patterns in cardiac surgery patients.  Crit Care Med. 1984;  12 523-527
  • 31 Cason C L, DeSalvo S K, Ray W T. Changes in oxygen saturation during weaning from short-term ventilator support after coronary artery bypass graft surgery.  Heart Lung. 1994;  23 368-375
  • 32 Magilligan Jr D J, Teasdall R, Eisinminger R, Peterson E. Mixed venous oxygen saturation as a predictor of cardiac output in the postoperative cardiac surgical patient.  Ann Thorac Surg. 1987;  44 260-262
  • 33 Pearson K S, Gomez M N, Moyers J R, Carter J G, Tinker J H. A cost/benefit analysis of randomized invasive monitoring for patients undergoing cardiac surgery.  Anesth Analg. 1989;  69 336-341
  • 34 Lee J, Wright F, Barber R, Stanley L. Central venous oxygen saturation in shock: a study in man.  Anesthesiology. 1972;  36 472-478
  • 35 Reinhart K, Rudolph T, Bredle D L, Hannemann L, Cain S M. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand.  Chest. 1989;  95 1216-1221
  • 36 Goedje O, Hoeke K, Lichtwarck-Aschoff M et al.. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution.  Crit Care Med. 1999;  27 2407-2412
  • 37 Buhre W, Weyland A, Kazmaier S et al.. Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting.  J Cardiothorac Vasc Anesth. 1999;  13 437-440
  • 38 Rodig G, Prasser C, Keyl C, Liebold A, Hobbhahn J. Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients.  Br J Anaesth. 1999;  82 525-530
  • 39 Raaijmakers E, Faes T J, Scholten R J, Goovaerts H G, Heethaar R M. A meta-analysis of three decades of validating thoracic impedance cardiography.  Crit Care Med. 1999;  27 1203-1213
  • 40 Shoemaker W C, Belzberg H, Wo C C et al.. Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients.  Chest. 1998;  114 1643-1652
  • 41 Murdaugh H V, Robin E D, Millen J E, Drewry W F. Cardiac output determinations by the dye-dilution methol in Squalus acanthias.  Am J Physiol. 1965;  209 723-726
  • 42 Jacobs R R, Heyden W C, Williams B T, Schmitz U T, Schenk Jr W G. Cardiac output in the exercising dog: an evaluation of the dye-dilution method using the electromagnetic flowmeter as a standard.  J Surg Res. 1970;  10 25-32
  • 43 Olsson B, Pool J, Vandermoten P, Varnauskas E, Wassen R. Validity and reproducibility of determination of cardiac output by thermodilution in man.  Cardiology. 1970;  55 136-148
  • 44 Gust R, Gottschalk A, Bauer H et al.. Cardiac output measurement by transpulmonary versus conventional thermodilution technique in intensive care patients after coronary artery bypass grafting.  J Cardiothorac Vasc Anesth. 1998;  12 519-522
  • 45 Sakka S G, Reinhart K, Meier-Hellmann A. Does the optimization of cardiac output by fluid loading increase splanchnic blood flow?.  Br J Anaesth. 2001;  86 657-662
  • 46 Swan H J, Ganz W, Forrester J et al.. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter.  N Engl J Med. 1970;  283 447-451
  • 47 Eidelman L A, Pizov R, Sprung C L. Pulmonary artery catheterization: at the crossroads?.  Crit Care Med. 1994;  22 543-545
  • 48 Dalen J E. Bedside hemodynamic monitoring.  N Engl J Med. 1979;  301 1176-1178
  • 49 Gore J M, Goldberg R J, Spodick D H, Alpert J S, Dalen J E. A community-wide assessment of the use of pulmonary artery catheters in patients with acute myocardial infarction.  Chest. 1987;  92 721-727
  • 50 Zion M M, Balkin J, Rosenmann D et al.. Use of pulmonary artery catheters in patients with acute myocardial infarction: analysis of experience in 5,841 patients in the SPRINT Registry. SPRINT Study Group.  Chest. 1990;  98 1331-1335
  • 51 Connors Jr A F, Speroff T, Dawson N V et al.. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators.  JAMA. 1996;  276 889-897
  • 52 Richard C, Warszawski J, Anguel N et al.. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial.  JAMA. 2003;  290 2713-2720
  • 53 Sandham J D, Hull R D, Brant R F et al.. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients.  N Engl J Med. 2003;  348 5-14
  • 54 Ganz W, Donoso R, Marcus H S, Forrester J S, Swan H J. A new technique for measurement of cardiac output by thermodilution in man.  Am J Cardiol. 1971;  27 392-396
  • 55 Jansen J R. The thermodilution method for the clinical assessment of cardiac output.  Intensive Care Med. 1995;  21 691-697
  • 56 Heerdt P M, Pond C G, Blessios G A, Rosenbloom M. Comparison of cardiac output measured by intrapulmonary artery Doppler, thermodilution, and electromagnetometry.  Ann Thorac Surg. 1992;  54 959-966
  • 57 Heyland D K, Cook D J, King D, Kernerman P, Brun-Buisson C. Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence.  Crit Care Med. 1996;  24 517-524
  • 58 Tuchschmidt J, Fried J, Astiz M, Rackow E. Elevation of cardiac output and oxygen delivery improves outcome in septic shock.  Chest. 1992;  102 216-220
  • 59 Meredith J H, Little J M, Egle Jr J L. A comparison of simultaneous cardiac output measurements by two methods: the oxygen-Fick principle and the electromagnetic flowmeter.  Am Surg. 1967;  33 949-952
  • 60 de Abreu M G, Quintel M, Ragaller M, Albrecht D M. Partial carbon dioxide rebreathing: a reliable technique for noninvasive measurement of nonshunted pulmonary capillary blood flow.  Crit Care Med. 1997;  25 675-683
  • 61 Fein A M, Goldberg S K, Walkenstein M D et al.. Is pulmonary artery catheterization necessary for the diagnosis of pulmonary edema?.  Am Rev Respir Dis. 1984;  129 1006-1009
  • 62 Schriger D L, Baraff L J. Capillary refill: is it a useful predictor of hypovolemic states?.  Ann Emerg Med. 1991;  20 601-605
  • 63 McGee S, Abernethy III W B, Simel D L. The rational clinical examination: is this patient hypovolemic?.  JAMA. 1999;  281 1022-1029
  • 64 Cook D J, Simel D L. The Rational Clinical Examination: does this patient have abnormal central venous pressure?.  JAMA. 1996;  275 630-634
  • 65 Eisenberg P R, Jaffe A S, Schuster D P. Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients.  Crit Care Med. 1984;  12 549-553
  • 66 Yazigi A, Madi-Jebara S, Antakly M C. Iliac venous pressure predicts central venous pressure in spontaneously breathing patients.  Crit Care Med. 1999;  27 1219
  • 67 Ho K M, Joynt G M, Tan P. A comparison of central venous pressure and common iliac venous pressure in critically ill mechanically ventilated patients.  Crit Care Med. 1998;  26 461-464
  • 68 Jacobsohn E, Chorn R, O’Connor M. The role of the vasculature in regulating venous return and cardiac output: historical and graphical approach.  Can J Anaesth. 1997;  44 849-867
  • 69 Brengelmann G L. A critical analysis of the view that right atrial pressure determines venous return.  J Appl Physiol. 2003;  94 849-859
  • 70 Magder S. More respect for the CVP.  Intensive Care Med. 1998;  24 651-653
  • 71 Magder S, Lagonidis D, Erice F. The use of respiratory variations in right atrial pressure to predict the cardiac output response to PEEP.  J Crit Care. 2001;  16 108-114
  • 72 Magder S, Georgiadis G, Tuck C. Respiratory variations in right atrial pressure predict response to fluid challenge.  J Crit Care. 1992;  7 76-85
  • 73 Morris A H, Chapman R H, Gardner R M. Frequency of technical problems encountered in the measurement of pulmonary artery wedge pressure.  Crit Care Med. 1984;  12 164-170
  • 74 Marik P, Heard S O, Varon J. Interpretation of the pulmonary artery occlusion (wedge) pressure: physician's knowledge versus the experts’ knowledge.  Crit Care Med. 1998;  26 1761-1764
  • 75 Godje O, Peyerl M, Seebauer T et al.. Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients.  Eur J Cardiothorac Surg. 1998;  13 533-539 , discussion 539-540
  • 76 Krahmer R L, Fang H K, Vitello J, Rypins E B, Law W R. Pulmonary capillary wedge pressure estimates of left ventricular preload are inaccurate in endotoxin shock: contribution of Starling resistor forces to septic pulmonary hypertension.  Shock. 1994;  2 344-350
  • 77 Hansen R M, Viquerat C E, Matthay M A et al.. Poor correlation between pulmonary arterial wedge pressure and left ventricular end-diastolic volume after coronary artery bypass graft surgery.  Anesthesiology. 1986;  64 764-770
  • 78 Cheung A T, Savino J S, Weiss S J, Aukburg S J, Berlin J A. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function.  Anesthesiology. 1994;  81 376-387
  • 79 Reichert C L, Visser C A, Koolen J J et al.. Transesophageal echocardiography in hypotensive patients after cardiac operations: comparison with hemodynamic parameters.  J Thorac Cardiovasc Surg. 1992;  104 321-326
  • 80 Bouhemad B, Nicolas-Robin A, Benois A et al.. Echocardiographic Doppler assessment of pulmonary capillary wedge pressure in surgical patients with postoperative circulatory shock and acute lung injury.  Anesthesiology. 2003;  98 1091-1100
  • 81 Loubieres Y, Vieillard-Baron A, Beauchet A et al.. Echocardiographic evaluation of left ventricular function in critically ill patients: dynamic loading challenge using medical antishock trousers.  Chest. 2000;  118 1718-1723
  • 82 Vincent J L, Thirion M, Brimioulle S, Lejeune P, Kahn R J. Thermodilution measurement of right ventricular ejection fraction with a modified pulmonary artery catheter.  Intensive Care Med. 1986;  12 33-38
  • 83 Diebel L, Wilson R F, Heins J et al.. End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients.  J Trauma. 1994;  37 950-955
  • 84 Cheatham M L, Nelson L D, Chang M C, Safcsak K. Right ventricular end-diastolic volume index as a predictor of preload status in patients on positive end-expiratory pressure.  Crit Care Med. 1998;  26 1801-1806
  • 85 Mitchell J P, Schuller D, Calandrino F S, Schuster D P. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization.  Am Rev Respir Dis. 1992;  145 990-998
  • 86 Sakka S G, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients.  Chest. 2002;  122 2080-2086
  • 87 Lichtwarck-Aschoff M, Zeravik J, Pfeiffer U J. Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation.  Intensive Care Med. 1992;  18 142-147
  • 88 Nuckton T J, Alonso J A, Kallet R H et al.. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome.  N Engl J Med. 2002;  346 1281-1286
  • 89 Koreny M, Karth G D, Geppert A et al.. Prognosis of patients who develop acute renal failure during the first 24 hours of cardiogenic shock after myocardial infarction.  Am J Med. 2002;  112 115-119
  • 90 Chiara O, Pelosi P, Segala M et al.. Mesenteric and renal oxygen transport during hemorrhage and reperfusion: evaluation of optimal goals for resuscitation.  J Trauma. 2001;  51 356-362
  • 91 Wilson J X, Young G B. Progress in clinical neurosciences: sepsis-associated encephalopathy: evolving concepts.  Can J Neurol Sci. 2003;  30 98-105
  • 92 Bakker J, Coffernils M, Leon M, Gris P, Vincent J L. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock.  Chest. 1991;  99 956-962
  • 93 Bakker J, Gris P, Coffernils M, Kahn R J, Vincent J L. Serial blood lactate levels can predict the development of multiple organ failure following septic shock.  Am J Surg. 1996;  171 221-226
  • 94 James J H, Luchette F A, McCarter F D, Fischer J E. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis.  Lancet. 1999;  354 505-508
  • 95 McNelis J, Marini C P, Jurkiewicz A et al.. Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit.  Am J Surg. 2001;  182 481-485
  • 96 Davis J W. The relationship of base deficit to lactate in porcine hemorrhagic shock and resuscitation.  J Trauma. 1994;  36 168-172
  • 97 Davis J W, Parks S N, Kaups K L, Gladen H E, O'Donnell-Nicol S. Admission base deficit predicts transfusion requirements and risk of complications.  J Trauma. 1996;  41 769-774
  • 98 Kincaid E H, Miller P R, Meredith J W, Rahman N, Chang M C. Elevated arterial base deficit in trauma patients: a marker of impaired oxygen utilization.  J Am Coll Surg. 1998;  187 384-392
  • 99 Husain F A, Martin M J, Mullenix P S, Steele S R, Elliott D C. Serum lactate and base deficit as predictors of mortality and morbidity.  Am J Surg. 2003;  185 485-491
  • 100 Nelson D P, Beyer C, Samsel R W, Wood L D, Schumacker P T. Pathological supply dependence of O2 uptake during bacteremia in dogs.  J Appl Physiol. 1987;  63 1487-1492
  • 101 Danek S J, Lynch J P, Weg J G, Dantzker D R. The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome.  Am Rev Respir Dis. 1980;  122 387-395
  • 102 Stratton H H, Feustel P J, Newell J C. Regression of calculated variables in the presence of shared measurement error.  J Appl Physiol. 1987;  62 2083-2093
  • 103 Bihari D, Smithies M, Gimson A, Tinker J. The effects of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients.  N Engl J Med. 1987;  317 397-403
  • 104 Fiddian-Green R G, Baker S. Predictive value of the stomach wall pH for complications after cardiac operations: comparison with other monitoring.  Crit Care Med. 1987;  15 153-156
  • 105 Maynard N, Bihari D, Beale R et al.. Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure.  JAMA. 1993;  270 1203-1210
  • 106 Downing A, Cottam S, Beard C, Potter D. Gastric mucosal pH predicts major morbidity following orthotopic liver transplantation.  Transplant Proc. 1993;  25 1804
  • 107 Marik P E. Gastric intramucosal pH: a better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis.  Chest. 1993;  104 225-229
  • 108 Roumen R M, Vreugde J P, Goris R J. Gastric tonometry in multiple trauma patients.  J Trauma. 1994;  36 313-316
  • 109 Silva E, DeBacker D, Creteur J, Vincent J L. Effects of vasoactive drugs on gastric intramucosal pH.  Crit Care Med. 1998;  26 1749-1758
  • 110 Meier-Hellmann A, Bredle D L, Specht M, Hannemann L, Reinhart K. Dopexamine increases splanchnic blood flow but decreases gastric mucosal pH in severe septic patients treated with dobutamine.  Crit Care Med. 1999;  27 2166-2171
  • 111 Forrest D M, Baigorri F, Chittock D R, Spinelli J J, Russell J A. Volume expansion using pentastarch does not change gastric-arterial CO2 gradient or gastric intramucosal pH in patients who have sepsis syndrome.  Crit Care Med. 2000;  28 2254-2258
  • 112 Frumento R J, Mongero L, Naka Y, Bennett-Guerrero E. Preserved gastric tonometric variables in cardiac surgical patients administered intravenous perflubron emulsion.  Anesth Analg. 2002;  94 809-814 , table of contents
  • 113 Gutierrez G, Palizas F, Doglio G et al.. Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients.  Lancet. 1992;  339 195-199
  • 114 Ivatury R R, Simon R J, Islam S et al.. A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH.  J Am Coll Surg. 1996;  183 145-154
  • 115 Gomersall C D, Joynt G M, Freebairn R C et al.. Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial.  Crit Care Med. 2000;  28 607-614
  • 116 Heard S O. Gastric tonometry: the hemodynamic monitor of choice (Pro).  Chest. 2003;  123(5 Suppl) 469S-474S
  • 117 Uusaro A, Russell J A, Walley K R, Takala J. Gastric-arterial pCO2 gradient does not reflect systemic and splanchnic hemodynamics or oxygen transport after cardiac surgery.  Shock. 2000;  14 13-17
  • 118 Boyd O, Mackay C J, Lamb G et al.. Comparison of clinical information gained from routine blood-gas analysis and from gastric tonometry for intramural pH.  Lancet. 1993;  341 142-146
  • 119 Sato Y, Weil M H, Tang W et al.. Esophageal pCO2 as a monitor of perfusion failure during hemorrhagic shock.  J Appl Physiol. 1997;  82 558-562
  • 120 Nakagawa Y, Weil M H, Tang W et al.. Sublingual capnometry for diagnosis and quantitation of circulatory shock.  Am J Respir Crit Care Med. 1998;  157(6 Pt 1) 1838-1843
  • 121 Povoas H P, Weil M H, Tang W et al.. Comparisons between sublingual and gastric tonometry during hemorrhagic shock.  Chest. 2000;  118 1127-1132
  • 122 Weil M H, Nakagawa Y, Tang W et al.. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock.  Crit Care Med. 1999;  27 1225-1229
  • 123 Marik P E. Sublingual capnography: a clinical validation study.  Chest. 2001;  120 923-927
  • 124 Marik P E, Bankov A. Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients.  Crit Care Med. 2003;  31 818-822
  • 125 Venkatesh B, Meacher R, Muller M J, Morgan T J, Fraser J. Monitoring tissue oxygenation during resuscitation of major burns.  J Trauma. 2001;  50 485-494
  • 126 Briers J D. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging.  Physiol Meas. 2001;  22 R35-R66
  • 127 Sair M, Etherington P J, Peter Winlove C, Evans T W. Tissue oxygenation and perfusion in patients with systemic sepsis.  Crit Care Med. 2001;  29 1343-1349
  • 128 Hotchkiss R S, Karl I E. The pathophysiology and treatment of sepsis.  N Engl J Med. 2003;  348 138-150
  • 129 Vincent J L, Dhainaut J F, Perret C, Suter P. Is the pulmonary artery catheter misused? A European view.  Crit Care Med. 1998;  26 1283-1287
  • 130 Nguyen A, Yaffe M B. Proteomics and systems biology approaches to signal transduction in sepsis.  Crit Care Med. 2003;  31(1 Suppl) S1-S6
  • 131 Hopf H W. Molecular diagnostics of injury and repair responses in critical illness: what is the future of monitoring in the intensive care unit?.  Crit Care Med. 2003;  31(8 Suppl) S518-S523

B. Taylor ThompsonM.D. 

Massachusetts General Hospital, Pulmonary and Critical Care Unit

BUL-148, 55 Fruit St.

Boston, MA 02114

Email: tthompson1@partners.org

    >