Anästhesiol Intensivmed Notfallmed Schmerzther 2004; 39(8): 471-476
DOI: 10.1055/s-2004-825735
Originalie
© Georg Thieme Verlag Stuttgart · New York

Wärmetransfer bei konduktiver Wärmung durch Wassermatten

Heat Transfer by Conductive Warming With Circulating-Water MattressesA.  Bräuer 1 , L.  Pacholik 1 , T.  Perl 1 , F.  Mielck 1 , W.  Weyland 2 , U.  Braun 1
  • 1 Zentrum Anästhesiologie, Rettungs- und Intensivmedizin, Georg-August-Universität Göttingen
  • 2 Abteilung für Anästhesie und Intensivmedizin, Evangelisches Bethesda-Krankenhaus Essen
Further Information

Publication History

Publication Date:
20 August 2004 (online)

Zusammenfassung

Ziel der Studie: Ziel der vorliegenden Probandenstudie war die Bestimmung des Wärmetransfers durch Wassermatten bei Anwendung unter dem Rücken und über den Beinen. Methodik: Mit Zustimmung der örtlichen Ethikkommission wurden bei acht Probanden sechs Wärmeflusssensoren auf dem Rücken und weitere acht Sensoren an beiden Beinen platziert. Die Probanden mussten sich dann auf eine Wassermatte (ComfortPad Plus®, Cincinnati Sub-Zero Products Inc., Cincinnati, OH, USA) mit Gelauflage (Granulab International, Armersfoort, Niederlande) legen. Über beide Beine wurde eine weitere Wassermatte (Plastipad™, Cincinnati Sub-Zero Products Inc.) gelegt. Beide Matten wurden mit einem Hico-Variotherm 530 (Hirtz & Co. Hospitalwerk, Köln) auf 41 °C gewärmt. Nach Bestimmung der Kontaktfläche wurde durch Multiplikation des gemessenen Wärmeflusses pro Fläche der Wärmetransfer errechnet. Ergebnisse: Der Wärmefluss pro Fläche zum Rücken betrug 45,6 ± 4,5 W m- 2, die Kontaktfläche war 0,39 ± 0,03 m2. Daraus errechnete sich ein Wärmetransfer von 18,0 ± 2,4 W. Der Wärmefluss pro Fläche zu den Beinen betrug 24,7 ± 4,3 W m- 2, die Kontaktflächenmessung ergab 0,12 ± 0,01 m2. Daraus errechnete sich ein Wärmetransfer von 2,9 ± 0,6 W. Schlussfolgerung: Durch die Wassermatte unter dem Rücken konnte ein deutlich höherer Wärmetransfer erzielt werden als mit der Wassermatte über den Beinen. Dennoch ist die Wärmung der Beine zur Hypothermieprophylaxe wichtiger, da Modellrechnungen zeigen, dass dadurch ein stärkerer Einfluss auf die Wärmebilanz ausgeübt wird.

Abstract

Aim of the study: To determine the heat transfer by circulating-water mattresses placed under the back and over both legs of human volunteers. Methods: With approval by the local ethics committee and informed consent eight minimally clothed volunteers were included in the study. Six calibrated heat flux transducers were placed on the back and additionally eight sensors were placed on both legs of each volunteer. The volunteers reclined on a circulating-water mattress (ComfortPad Plus®, Cincinnati Sub-Zero Products Inc., Cincinnati, OH, USA) coated with gel (Granulab International, Armersfoort, Niederlande). Another circulating-water mattress (Plastipad™, Cincinnati Sub-Zero Products Inc.) was placed over both legs. Both devices were heated to 41 °C by a hypo-hyperthermia system (Hico-Variotherm 530, Hirtz & Co. Hospitalwerk, Cologne, Germany). Heat flux data were sampled during steady-state conditions. After determination of the contact area between the mattresses and the skin, heat transfer was calculated by multiplication of the heat flux per area by the contact area. Results: Heat flux per area to the back was 45.6 ± 4.5 W m- 2, the contact area was 0.39 ± 0.03 m2. This resulted in a heat transfer of 18.0 ± 2.4 W. Heat flux per area to the legs was 24.7 ± 4.3 W m- 2, the contact area was 0.12 ± 0.01 m2. This resulted in a heat transfer of 2.9 ± 0.6 W. Conclusion: The heat transfer of the circulating-water mattress to the back was much higher than the heat transfer to the legs. Nevertheless, model calculations show that conductive warming of the legs is more important for the prevention of perioperative hypothermia than conductive warming of the back, because it has a higher impact on the heat balance.

Literatur

  • 1 Sessler D I. Perioperative heat balance.  Anesthesiology. 2000;  92 578-596
  • 2 Valeri C R, Khabbatz K, Khuri S F, Marquardt C, Ragno G, Feingold H, Gray A D, Axford T. Effect of skin temperature on platelet function in patients undergoing extracorporeal bypass.  J Thorac Cardiovasc Surg. 1992;  104 108-116
  • 3 Rohrer M J, Natale A M. Effect of hypothermia on the coagulation cascade.  Crit Care Med. 1992;  20 1402-1405
  • 4 Kurz A, Sessler D I, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization.  N Engl J Med. 1996;  334 1209-1215
  • 5 Schmied H, Kurz A, Sessler D I, Kozek S, Reiter A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty.  Lancet. 1996;  347 289-292
  • 6 Winkler M, Akça O, Birkenberg B, Hetz H, Scheck T, Arkiliç C F, Kabon B, Marker E, Grübl A, Czepan R, Greher M, Goll V, Gottsauner-Wolf F, Kurz A, Sessler D I. Aggressive warming reduces blood loss during hip arthroplasty.  Anesth Analg. 2000;  91 978-984
  • 7 Frank S M, Beattie C, Christopherson R, Norris E J, Perler B A, Williams G M, Gottlieb S O. Unintentional hypothermia is associated with postoperative myocardial ischemia.  Anesthesiology. 1993;  78 468-476
  • 8 Frank S M, Fleischer L A, Breslow M J, Higgins M S, Olsen K F, Kelly S, Beattie C. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial.  JAMA. 1997;  277 1127-1134
  • 9 Hynson J M, Sessler D I. Intraoperative warming therapies: a comparison of three devices.  J Clin Anesth. 1992;  4 194-199
  • 10 Kurz A, Kurz M, Poeschl G, Faryniak B, Redl G, Hackl W. Forced-air warming maintains intraoperative normothermia better than circulating-water mattresses.  Anesth Analg. 1993;  77 89-95
  • 11 Müller C M, Langenecker S, Andel H, Nantschev I, Hölzenbein T J, Zimpfer M. Forced-air warming maintains normothermia during orthotopic liver transplantation.  Anaesthesia. 1995;  50 229-232
  • 12 Sessler D I, Moayeri A. Skin-surface warming: heat flux and central temperature.  Anesthesiology. 1990;  73 218-224
  • 13 Ng S, Oo C, Loh K, Lim P, Chan Y, Ong B. A comparative study of three warming interventions to determine the most effective in maintaining perioperative normothermia.  Anesth Analg. 2003;  96 171-176
  • 14 Matsuzaki Y, Matsukawa T, Ohki K, Yamamoto Y, Nakamura M, Oshibuchi T. Warming by resistive heating maintains perioperative normothermia as well as forced air warming.  Br J Anaesth. 2003;  90 689-691
  • 15 English M JM, Farmer C, Scott W AC. Heat loss in exposed volunteers.  J Trauma. 1990;  30 422-425
  • 16 Crino M H, Nagel E L. Thermal burns caused by warming blankets in the operating room.  Anesthesiology. 1968;  29 149-150
  • 17 Scott S M, Otten N C. Thermal blanket injury in the operating room.  Arch Surg. 1967;  94 181
  • 18 Gali B, Findlay J Y, Plevak D J. Skin injury with the use of a water warming device.  Anesthesiology. 2003;  98 1509-1510
  • 19 Bennett J, Ramachandra V, Webster J, Carli F. Prevention of hypothermia during hip surgery: effect of passive compared with active skin surface warming.  Br J Anaesth. 1994;  73 180-183
  • 20 Kaudasch G, Schempp P, Skierski P, Turner E. Einfluß konvektiver Wärmezufuhr während Abdominalchirurgie auf die früh-postoperative Wärmebilanz.  Anaesthesist. 1996;  45 1075-1081
  • 21 Muth C M, Mainzer B, Peters J. The use of countercurrent heat exchangers diminishes accidental hypothermia during abdominal aortic aneurysm surgery.  Acta Anaesthesiol Scand. 1997;  40 1197-1202
  • 22 Matsukawa T, Sessler D I, Sessler A M, Schroeder M, Ozaki M, Kurz A, Cheng C. Heat flow and distribution during induction of general anesthesia.  Anesthesiology. 1995;  82 662-673
  • 23 Kurz A, Sessler D I, Christensen R, Dechert M. Heat balance and distribution during the core-temperature plateau in anesthetized humans.  Anesthesiology. 1995;  83 491-499
  • 24 Bräuer A, English M JM, Steinmetz N, Lorenz N, Perl T, Braun U, Weyland W. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.  Acta Anaesthesiol Scand. 2002;  46 965-972
  • 25 Bräuer A, English M JM, Lorenz N, Steinmetz N, Perl T, Braun U, Weyland W. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.  Acta Anaesthesiol Scand. 2003;  47 58-64
  • 26 Perl T, Bräuer A, Timmermann A, Mielck F, Weyland W, Braun U. Are there differences in perfomence of forced-air warmers? A randomized trial of heat transfer in volunteers using upper body blankets.  Acta Anaesthesiol Scand. 2003;  47 1159-1164
  • 27 English M, Scott A, Weyland W. Grundlagen von Wärmeaustausch und Isolation im OP.  Anaesthesiol Intensivmed Notfallmed Schmerzther. 1998;  33 386-389
  • 28 Weyland W, English M, Scott A. Perioperative Hypothermia. Prevention and Treatment. In: Gullo A (Hrsg.). Trieste, Italy November 19 - 21, 1997 Mailand; Springer 1998: 313-318
  • 29 Sessler D I, McGuire J, Moayeri A, Hynson J. Isoflurane-induced vasodilatation minimally increases cutaneous heat loss.  Anesthesiology. 1991;  74 226-232
  • 30 Bräuer A, English M JM, Sander H, Timmermann A, Braun U, Weyland W. Construction and evaluation of a manikin for perioperative heat exchange.  Acta Anaesthesiol Scand. 2002;  46 43-50

Dr. med. Anselm Bräuer DEAA

Zentrum Anästhesiologie, Rettungs- und Intensivmedizin ·

Georg-August-Universität · Robert-Koch-Straße 40 · 37075 Göttingen

Email: abraeue@gwdg.de

    >