Horm Metab Res 2004; 36(6): 423-429
DOI: 10.1055/s-2004-814578
Original
© Georg Thieme Verlag Stuttgart · New York

Pharmacodynamics and Pharmacokinetics of Synthetic Mineralocorticoids and Glucocorticoids: Receptor Transactivation and Prereceptor Metabolism by 11β-hydroxysteroid-dehydrogenases

S.  Diederich 1, 2 , T.  Scholz 1 , E.  Eigendorff 1 , Ch.  Bumke-Vogt 1 , M.  Quinkler 1 , P.  Exner 1 , A.  F.  H.  Pfeiffer 1, 2 , W.  Oelkers 1 , V.  Bähr 1, 2
  • 1Dept. of Endocrinology, Diabetes and Nutrition, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin
  • 2Dept. of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
Further Information

Publication History

Received 8 December 2003

Accepted after Revision 24 February 2004

Publication Date:
07 July 2004 (online)

Abstract

Glucocorticoid (GC) and mineralocorticoid (MC) action in target tissues is determined by prereceptor metabolism by 11β-hydroxysteroid-dehydrogenases (HSDs) and receptor transactivation. We characterized these parameters for steroids often used in clinical practice. HSD activity was examined in human liver (HSD1) and kidney microsomes (HSD2) and in CHO cells stably transfected with both enzymes. GC and MC transcriptional activity was tested by luciferase assay in CV-1 cells transfected with human GC or MC receptor expression vectors. The 11-hydroxy-group is necessary for GC and MC receptor transactivation. As HSD2 oxidizes 11-hydroxysteroids to inactive 11-dehydrosteroids, GC and MC activity in HSD2-expressing tissues (kidney, colon) is regulated by this enzyme. As 9α-fluorination (such as in 9α-fluorocortisol) decreases oxidation by HSD2 and increases both GC and MC receptor transactivation, this modification leads to optimal, but non-selective transactivation of both receptors. Increased GC receptor and decreased MC receptor transactivation leading to more selective GC activity is reached using the following substituents: 16β-methyl (in betamethasone), 16α-methyl (in dexamethasone) and ▵1-dehydro-configuration (in prednisolone). Whereas the modifications in position 16 decrease oxidation by HSD2, the ▵1-dehydro-configuration increases HSD2-activity leading to an enhanced inactivation of prednisolone compared to all other steroids. 9α-fluorocortisol, the most frequently used substance for MC-substitution, seems to be the best choice of available steroids for this purpose. Whereas GC selectivity can be improved by hydrophobic substituents in position 16 and the ▵1-dehydro-configuration, maximal GC activity needs additional fluorination in position 9α (such as in dexamethasone). For GC therapy directed to HSD2-expressing organs, widely used prednisolone does not seem to be the optimal recommendation.

References

  • 1 Fried J, Borman A. Synthetic derivates of cortical hormones.  Vitam Horm. 1958;  16 303-374
  • 2 Ballard P L, Carter J P, Graham B S, Baxter J D. A radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man.  J Clin Endocrinol Metab. 1975;  41 290-304
  • 3 Agarwal M K, Mirshahi M. General overview of mineralocorticoid hormone action.  Pharmacol Ther. 1999;  84 273-326
  • 4 Quinkler M, Oelkers W, Diederich S. Clinical implications of glucocorticoid metabolism by 11beta-hydroxysteroid dehydrogenases in target tissues.  Eur J Endocrinol. 2001;  144 87-97
  • 5 Whorwood C B, Franklyn J A, Sheppard M C, Stewart P M. Tissue localization of 11 beta-hydroxysteroid dehydrogenase and its relationship to the glucocorticoid receptor.  J Steroid Biochem Mol Biol. 1992;  41 21-28
  • 6 Nomura S, Fujitaka M, Sakura N, Ueda K. Circadian rhythms in plasma cortisone and cortisol and the cortisone/cortisol ratio.  Clin Chim Acta. 1997;  266 83-91
  • 7 Whorwood C B, Mason J I, Ricketts M L, Howie A J, Stewart P M. Detection of human 11β-hydroxysteroid dehydrogenase isoforms using reverse-transcriptase-polymerase chain reaction and localization of the type 2 isoform to renal collecting ducts.  Molecular and Cellular Endocrinology. 1995;  110 R7-R12
  • 8 Leckie C, Chapman K E, Edwards C RW, Seckl J R. LLC-PK1 cells model 11β-hydroxysteroid dehydrogenase type 2 regulation of glucocorticoid access to renal mineralocorticoid receptors.  Endocrinology. 1995;  136 5561-5569
  • 9 Dunn J F, Nisula B C, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma.  J Clin Endocrinol Metab. 1981;  53 58-68
  • 10 Oelkers W, Diederich S, Bähr V. Diagnosis and therapy surveillance in Addison’s disease: rapid adrenocorticotropin (ACTH) test and measurement of plasma ACTH, renin activity, and aldosterone.  J Clin Endocrinol Metab. 1992;  75 259-264
  • 11 Diederich S, Hanke B, Burkhardt P, Müller M, Schöneshöfer M, Bähr V, Oelkers W. Metabolism of synthetic corticosteroids by 11β-hydroxysteroid- dehydrogenases in man.  Steroids. 1998;  63 271-277
  • 12 Diederich S, Grossmann C, Hanke B, Quinkler M, Herrmann M, Bähr V, Oelkers W. In the search for specific inhibitors of human 11beta-hydroxysteroid-dehydrogenases: chenodeoxycholic acid selectively inhibits 11beta-HSD-I.  Eur J Endocrinol. 2000;  142 200-207
  • 13 Diederich S, Eigendorff E, Burkhard P, Quinkler M, Bumke-Vogt C, Rochel M, Seidelmann D, Esperling P, Oelkers W, Bähr V. 11β-hydroxysteroid dehydrogenase type 1 and 2: An important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids.  J Clin Endocrinol Metab. 2002;  87 5695-5701
  • 14 Diederich S, Hanke B, Oelkers W, Bähr V. Metabolism of dexamethasone in the human kidney: Nicotinamide adenine dinucleotide-dependent 11β-reduction.  J Clin Endocrinol Metab. 1997;  82 1598-1602
  • 15 Quinkler M, Meyer B, Bumke-Vogt C, Grossmann C, Gruber U, Oelkers W, Diederich S, Bähr V. Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor.  Eur J Endocrinol. 2002;  146 789-799
  • 16 Arriza J L, Weinberger C, Cerelli G, Glaser T M, Handelin B L, Housman D E, Evans R M. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor.  Science. 1987;  237 268-275
  • 17 Giguere V, Hollenberg S M, Rosenfeld M G, Evans R M. Functional domains of the human glucocorticoid receptor.  Cell. 1986;  46 645-652
  • 18 Chandler V L, Maler B A, Yamamoto K R. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo.  Cell. 1983;  33 489-499
  • 19 Gellersen B, Kempf R, Telgmann R, DiMattia G E. Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma.  Mol Endocrinol. 1994;  8 356-373
  • 20 Lorenz W W, McCann R O, Longiaru M, Cormier M J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase.  Proc Natl Acad Sci U S A. 1991;  88 4438-4442
  • 21 Jenkins J S, Sampson P A. Conversion of cortisone to cortisol and prednisone to prednisolone.  Br Med J. 1967;  2 205-207
  • 22 Diederich S, Quinkler M, Burkhardt P, Großmann C, Bähr V, Oelkers W. 11β-Hydroxysteroid-dehydrogenase isoforms: tissue distribution and implications for clinical medicine.  Eur J Clin Invest. 2000;  30 (Suppl 3) 21-27
  • 23 Escher G, Frey F J, Frey B M. 11beta-Hydroxysteroid dehydrogenase accounts for low prednisolone/prednisone ratios in the kidney.  Endocrinology. 1994;  135 101-106
  • 24 Oelkers W, Buchen S, Diederich S, Krain J, Muhme S, Schöneshöfer M. Impaired renal 11 beta-oxidation of 9 alpha-fluorocortisol: an explanation for its mineralocorticoid potency.  J Clin Endocrinol Metab. 1994;  78 928-932
  • 25 Ruers T JM, Buurman W A, van Boxtel C J, van der Linden C J, Kootstra G. Immunohistological observations in rat kidney allografts after local steroid administration.  J Exp Med. 1987;  166 1205-1220
  • 26 Ruers T JM, Buurman W A, Smits J FM, van der Linden C J, van Dongen J J, Struyker-Boudier H AJ, Kootstra G. Local treatment of renal allografts, a promising way to reduce the dosage of immunosuppressive drugs.  Transplantation. 1986;  41 156-161
  • 27 Fejes-Toth G, Pearce D, Naray-Fejes-Toth A. Subcellular localization of mineralocorticoid receptors in living cells: effects of receptor agonists and antagonists.  Proc Natl Acad Sci USA. 1998;  95 2973-2978
  • 28 Pratt W B, Toft D O. Steroid receptor interactions with heat shock protein and immunophilin chaperones.  Endocr Rev. 1997;  18 306-36
  • 29 Köppel H, Christ M, Yard B A, Bar P C, Van Der Woude F J, Wehling M. Nongenomic effects of aldosterone on human renal cells.  J Clin Endocrinol Metab. 2003;  88 1297-1302
  • 30 Adcock I M. Glucocorticoid-regulated transcription factors.  Pulm Pharmacol Ther. 2001;  14 211-219
  • 31 Haynes R CJ. Adrenocorticotropic hormone: Adrenocortical steroids and their synthetic analogs: Inhibitors of the synthesis and actions of adrenocortical hormones. In: Goodman Gilman A, Rall TW, Nies AS, Tayler P (eds) The Pharmacological Basis of Therapeutics. New York; Pergamon Press 1990: 1431-1462

S. Diederich

Dept. of Endocrinology, Diabetes and Nutrition · Charité Universitätsmedizin Berlin

Campus Benjamin Franklin, Hindenburgdamm 30 · 12200 Berlin · Germany

Phone: + 49 (30) 8445-2114 ·

Fax: + 49 (30) 8445-4204

    >