Rofo 2001; 173(8): 677-685
DOI: 10.1055/s-2001-16393
ÜBERSICHT
© Georg Thieme Verlag Stuttgart · New York

MR-Angiographie: Technische Grundlagen und Anwendungen in der Diagnostik neurologischer Erkrankungen

MR angiography: Technical principles and uses in the diagnosis of neurological diseasesS. Heiland, M. Hartmann, K. Sartor
  • Abteilung Neuroradiologie, Neurologische Universitätsklinik Heidelberg
Further Information

Publication History

Publication Date:
15 August 2001 (online)

Zusammenfassung.

Die Magnet-Resonanz-Angiographie (MRA) hat sich seit Anfang der 90er Jahre in der Routinediagnostik zerebrovaskulärer Erkrankungen etabliert. Zwar gilt die invasive digitale Subtraktionsangiographie (DSA) weiterhin als Goldstandard in der zerebralen Gefäßdiagnostik, doch wurde sie bei vielen klinischen Fragestellungen von der MRA verdrängt. In diesem Artikel soll zunächst eine Übersicht über die unterschiedlichen Verfahren der MRA gegeben werden. In einem zweiten Teil wird der Stellenwert der MRA sowie Vor- und Nachteile der einzelnen Verfahren in der Diagnostik unterschiedlicher zerebrovaskulärer Erkrankungen wie Gefäßverschluss, Gefäßstenose, Dissektion, Aneurysmen, zerebrale und spinale Gefäßmalformationen diskutiert.

MR angiography: Technical principles and uses in the diagnosis of neurological diseases.

During the last decade, magnetic resonance angiography (MRA) has been incorporated into the routine evaluation of patients with suspected cerebrovascular disease. Although digital subtraction angiography (DSA) is still the gold standard in diagnostics of intracranial vascular disease, it has been replaced by MRA in numerous clinical applications. In this paper we first provide a review of the various MRA techniques. In the second part, the diagnostic value as well as advantages and disadvantages of the different techniques are assessed for various cerebrovascular diseases, such as vessel occlusion, stenosis, dissection, cerebral aneurysms, and spinal and cerebral arteriovenous malformations.

Literatur

  • 1 Keller P. Time-of-flight magnetic resonance angiography.  Neuroimag Clin North Am. 1992;  4 639-656
  • 2 Laub G A, Kaiser W A. MR angiography with gradient motion refocusing.  J Comput Assist Tomogr. 1988;  12 377-382
  • 3 Anderson C, Saloner D, Tsurunda J, Shapeero L G, Lee R E. Artifacts in maximum-intensity-projection display of MR angiograms.  Am J Roentgenol. 1990;  154 623-629
  • 4 Keller P. Magnetic resonance angiography of the neck.  Neuroimag Clin North Am. 1996;  6 853-681
  • 5 Evans A J, Richardson D B, Tien R, MacFall J R, Hedlund L W, Heinz E R, Boyko O, Sostman H D. Poststenotic signal loss in MR angiography: effects of echo time, flow compensation, and fractional echo.  Am J Neuroradiol. 1993;  14 721-729
  • 6 Patel M R, Edelman R R. MR Angiography of the Head and Neck.  Top Magn Reson Imaging. 1996;  8 345-365
  • 7 Lewin J S, Laub G. Intracranial MR angiography: a direct comparison of three time-of-flight techniques.  Am J Neuroradiol. 1991;  12 1133-1139
  • 8 Laub G. Time-of-flight method of MR angiography.  MR Clin North Am. 1995;  3 391-398
  • 9 Purdy G, Cadena G, Laub G. The design of a variable tip angle slab selection (TONE) pulses for improved 3D MR angiography.  SMRM Book of Abstracts. 1992;  11 882
  • 10 Tkach J, Masaryk T, Ruggieri P, Ross B, Dillinger P, Purdy G, Laub G. Use of Tilted Optimized Nonsaturating Excitation.  SMRM Book of Abstracts. 1992;  11 3905
  • 11 Parker D L, Yuan C, Blatter D D. MR angiography by multiple thin slab 3D acquisition.  Magn Reson Med. 1991;  17 434-451
  • 12 Blatter D D, Parker D L, Robison R O. Cerebral MR angiography with multiple overlapping thin slab acquisition.  Radiology. 1991;  179 805-811
  • 13 Atkinson D, Brant Zawadzki M, Gillan G, Purdy D, Laub G. Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution.  Radiology. 1994;  190 890-894
  • 14 Dumoulin C L. Phase contrast MR angiography techniques.  MR Clin North Am. 1995;  3 399-411
  • 15 Bernstein M A, Ikezaki Y. Comparison of phase difference and complex-difference processing in phase-contrast MR angiography.  J Magn Reson Imaging. 1991;  1 725-729
  • 16 Dumoulin C L, Souza S P, Walker M F, Yoshitome E. Time-resolved magnetic resonance angiography.  Magn Reson med. 1988;  6 275-286
  • 17 Goyen M, Heuser L J. Improved peripheral MRA using multi-velocity-encoding phase contrast-enhanced techniques.  Acta Radiol. 2000;  41 139-141
  • 18 Runge V M, Kirsch J E, Lee C. Contrast-enhanced MR angiography.  J Magn Reson Imaging. 1993;  3 233-239
  • 19 Laub G. Principles of contrast-enhanced MR angiography.  MR Clin North Am. 1999;  7 782-795
  • 20 Hatabu H, Gaa J, Kim D, Li W, Prasad P V, Edelman R R. Pulmonary perfusion: qualitative assessment with dynamic contrast- enhanced MRI using ultra-short TE and inversion recovery turbo FLASH.  Magn Reson Med. 1996;  36 503-508
  • 21 Binkert C A, Kollias S S, Valavanis A. Spinal cord vascular disease: characterization with fast three-dimensional contrast-enhanced MR angiography.  Am J Neuroradiol. 1999;  20 1785-1793
  • 22 Foo T K, Saranathan M, Prince M R, Chenevert T L. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography.  Radiology. 1997;  203 275-280
  • 23 Jäger H R, Moore E A, Bynevelt M, Coley S, Mounfield P, Kitchen N, Taylor W. Contrast-enhanced MR angiography in patients with carotid artery stenosis: comparison of two different techniques with an unenhanced 2D time-of-flight sequence.  Neuroradiology. 2000;  42 240-248
  • 24 Slosman F, Stolpen A H, Lexa F J, Schnall M D, Langlotz C P, Carpenter J P, Goldberg H I. Extracranial atherosclerotic carotid artery disease: evaluation of non-breath-hold three-dimensional gadolinium-enhanced MR angiography.  Am J Roentgenol. 1998;  170 489-495
  • 25 Johnson B A, Heisermann J E, Drayer B P, Keller P J. Intracranial MR angiography: its role in the integrated approach to brain infarction.  Am J Neuroradiol. 1994;  15 901-908
  • 26 Oelerich M, Lentschig M G, Zunker P, Reimer P, Rummeny E J, Schuierer G. Intracranial vascular stenosis and occlusion: comparison of 3D time-of-flight and 3D phase-contrast MR angiography.  Neuroradiology. 1998;  40 567-573
  • 27 Fürst G, Steinmetz H, Fischer H, Skutta B, Sitzer M, Aulich A, Kahn T, Mödder U. Selective MR angiography and intracranial collateral blood flow.  J Comput Assist Tomogr. 1993;  17 178-183
  • 28 Vogl T J, Bergmann C U, Villringer A, Einhäupl K M, Balzer J O, Steinhoff H, Felix R. Venöse MR-Angiographie für die Primärdiagnostik und Verlaufskontrolle von Sinusvenenthrombosen.  Fortschr Röntgenstr. 1993;  159 78-85
  • 29 Lewin J S, Masaryk T J, Smith A S, Ruggieri P M, Ross J S. Time-of-flight intracranial MR venography: evaluatin of the sequential oblique section technique.  Am J Neuroradiol. 1994;  15 1657-1664
  • 30 Catalano C, Pavone P, Laghi A, Scipioni A, Fanelli F, Assael F G, Grossi A, Venosi S, Passariello R. Role of MR venography in the evaluation of deep venous thrombosis.  Acta Radiol. 1997;  38 907-912
  • 31 Liauw L, van Buchem M A, Spilt A, de Bruine F T, van den Berg R, Hermans J, Wasser M N. MR angiography of the intracranial venous system.  Radiology. 2000;  214 678-682
  • 32 Fujita N, Hirabuki N, Fujii K, Hashimoto T, Miura T, Sato T, Kozuka T. MR imaging of middle cerebral artery stenosis and occlusion: value of MR angiography.  Am J Neuroradiol. 1994;  15 335-341
  • 33 Wentz K U, Röther J, Schwartz A, Mattle H P, Suchalla R, Edelman R R. Intracranial vertebrobasilar system: MR angiography.  Radiology. 1994;  190 105-110
  • 34 Heisermann J E, Drayer B P, Keller P J, Fram E K. Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography.  Radiology. 1992;  185 667-673
  • 35 Vogl T J, Heinzinger K, Juergens M, Kutter R, Hepp W, Balzer J O, Haupt G, Banzer D, Felix R. Multiple slab MR angiography of the A. carotis interna: a preoperative comparative study.  Fortschr Röntgenstr. 1995;  162 404-411
  • 36 Korogi Y, Takahashi M, Nakagawa T, Mabuchi N, Watabe T, Shiokawa Y, Shiga H, O'Uchi T, Miki H, Horikawa Y, Fujiwara S, Furuse M. Intracranial vascular stenosis and occlusion: MR angiographic findings.  Am J Neuroradiol. 1997;  18 135-143
  • 37 Fiebach J, Brandt T, Knauth M, Jansen O. MRT mit Fettsuppression zur Darstellung des Wandhämatoms bei spontaner Dissektion der A. carotis interna.  Fortschr Röntgenstr. 1999;  171 290-299
  • 38 Isoda H, Ramsey R G, Takehara Y, Takahashi M, Kaneko M. MR angiography of aneurysm models of various shapes and neck sizes.  Am J Neuroradiol. 1997;  18 1463-1472
  • 39 Isoda H, Takehara Y, Isogai S, Masunaga H, Takeda H, Nozaki A, Sakahara H. MRA of intracranial aneurysm models: a comparison of contrast-enhanced three-dimensional MRA with time-of-flight MRA.  J Comput Assist Tomogr. 2000;  24 308-315
  • 40 Chung T S, Joo J Y, Lee S K, Chien D, Laub G. Evaluation of cerebral aneurysms with high-resolution MR angiography using a section-interpolation technique: correlation with digital subtraction angiography.  Am J Neuroradiol. 1999;  20 229-235
  • 41 Huston J, Nichols D A, Luetmer P H, Goodwin J T, Meyer F B, Wiebers D O, Weaver A L. Blinded prospective evaluation of sensitivity of MR angiography to known intracranial aneurysms: importance of aneurysm size.  Am J Neuroradiol. 1994;  15 1607-1614
  • 42 Raaymakers T W, Buys P C, Verbeeten B, Ramos L M, Witkamp T D, Hulsmans F J, Mali W P, Algra A, Bonsel G J, Bossuyt P M, Vonk C M, Buskens E, Limburg M, van Gijn J, Gorissen A, Greebe P, Albrecht K W, Tulleken C A, Rinken G J. MR angiography as a screening tool for intracranial aneurysms: feasibility, test characteristics, and interobserver agreement.  Am J Roentgenol. 1999;  173 1469-1475
  • 43 Jäger H R, Mansmann U, Hausmann O, Partzsch U, Moseley I F, Taylor W J. MRA versus digital subtraction angiography in acute subarachnoid haemorrhage: a blinded multireader study of prospectively recruited patients.  Neuroradiology. 2000;  42 313-326
  • 44 Lang E W, Steffens J C, Link J, Mehdorn H M. The utility of contrast-enhanced MR-angiography for posterior fossa giant cerebral aneurysm management.  Neurol Res. 1998;  20 705-708
  • 45 Anzalone N, Righi C, Simionato F, Scomazzoni F, Pagani G, Calori G, Santino P, Scotti G. Three-dimensional time-of-flight MR angiography in the evaluation of intracranial aneurysms treated with Guglielmi detachable coils.  Am J Neuroradiol. 2000;  21 746-752
  • 46 Klucznik R P, Carrier D A, Pyka R, Haid R W. Placement of a ferromagnetic intracerebral aneurysm clip in a magnetic field with a fatal outcome.  Radiology. 1993;  187 855-856
  • 47 Eberhard K EW, Tomandl B, Nömayr A, Huk W J. Stellenwert der CT-Angiographie in der Diagnostik von Aneurysmen der Hirnarterien.  Radiologe. 1997;  37 905-912
  • 48 Huston J, Rufenacht D A, Ehman R L, Wiebers D O. Intracranial aneurysms and vascular malformations: comparison of time-of-flight and phase-contrast MR angiography.  Radiology. 1991;  181 721-730
  • 49 Petersen D, Klose U. Indikationen zur Kontrastmittelgabe bei der MR-Angiographie der Hirngefäße.  Radiologe. 1997;  37 508-514
  • 50 Essig M, Reichenbach J R, Schad L R, Schoenberg S O, Debus J, Kaiser W A. High-resolution MR venography of cerebral arteriovenous malformations.  Magn Reson Imaging. 1999;  17 1417-1425
  • 51 Schad L R, Bock M, Baudendistel K, Essig M, Debus J, Knopp M V, Engenhart R, Lorenz W J. Improved target volume definition in radiosurgery of arteriovenous malformations by stereotactic correlation of MRA, MRI, blood bolus tagging, and functional MRI.  Eur Radiol. 1996;  6 38-45
  • 52 Bowen B C, Fraser K, Kochan J P, Pattany P M, Green B A, Quencer R M. Spinal dural arteriovenous fistulas: evaluation with MR angiography.  Am J Neuroradiol. 1995;  16 2029-2043
  • 53 Bowen B C, DePrima S, Pattany P M, Marcillo A, Madsen P, Quencer R M. MR angiography of normal intradural vessels of the thoracolumbar spine.  Am J Neuroradiol. 1996;  17 483-494
  • 54 Mascalchi M, Quillici N, Ferrito G, Mangiafico S, Scazzeri F, Torselli P, Petruzzi P, Cosottini M, Tessa C, Bartolozzi C. Identification of the feeding arteries of spinal vascular lesions via phase-contrast MR angiography with three-dimensional acquisition and phase display.  Am J Neuroradiol. 1997;  18 351-358
  • 55 Heiland S, Sartor K. Magnetresonanztomographie beim Schlaganfall - methodische Grundlagen und klinische Anwendung.  Fortschr Röntgenstr. 1999;  171 3-14

Dr. rer. nat. Sabine Heiland

Abteilung Neuroradiologie
Neurologische Universitätsklinik Heidelberg

Im Neuenheimer Feld 400
69120 Heidelberg

Phone: + 49-6221-567566

Fax: + 49-6221-564673

Email: Sabine_Heiland@med.uni-heidelberg.de

    >