Thorac Cardiovasc Surg 2001; 49(2): 78-83
DOI: 10.1055/s-2001-11711
Original Cardiovascular
© Georg Thieme Verlag Stuttgart · New York

Primary Tissue Failure of Bioprostheses: New Evidence from In Vitro Tests[*]

M. Deiwick1 , B. Glasmacher3 , E. Pettenazzo4 , D. Hammel1 , W. Castellón2 , G. Thiene4 , H. Reul3 , E. Berendes5 , H. H. Scheld1
  • 1Klinik und Poliklinik für Thorax, Herz- und Gefäßchirurgie, Münster, Germany
  • 2Labor für Biophysik, Institut für Experimentelle Audiologie, Münster, Germany
  • 3Helmholtz-Institut für Biomedizinische Technik, Aachen, Germany
  • 4Department of Pathology, University of Padua, Italy
  • 5KIinik für Anästhesiologie und Operative Intensivmedizin, Münster, Germany
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Background: Primary tissue failure, which is mainly caused by calcification, is still the limiting factor in the long-term outcome of heart valve bioprostheses. Even though the precise nature of this process is not fully understood, in vitro tests have been developed to reproduce and predict calcification for individual bioprostheses. Methods: In vitro calcification testing was performed by using an accelerated pulsatile valve tester which was adapted for testing stented as well as stentless bioprostheses with physiological fluid dynamics. A total of 84 bioprostheses (porcine, pericardial and stentless porcine of different manufacturers) were cyclically loaded at a test rate of 300/min at 37° C within a rapid calcification fluid with CaxP = 130 (mg/dl)2 at pH 7.4. Calcification was assessed by microradiography after 12 × 106 cycles. In a previous step, holographic interferometry was performed to identify irregularities of valve leaflets in order to predict later calcification. Selected specimens of calcified bioprostheses underwent histology, transmission (TEM) and scanning (SEM) electron microscopy. Tissue mineralization was investigated by coupling SEM, electron microprobe analysis (EMPA) and X-ray powder diffraction (XRPD) methods. Results: For all tested bioprostheses, a significant calcification was achieved within 4 to 6 weeks of ongoing testing, and the degree of calcification increased with time. A significant correlation between calcification and leaflet irregularities (detected by holographic interferometry) was found (r = 0.80, p = 0.001). Calcification varied between individual bioprostheses, and significant differences were detected for different groups (calculated as percentage of total leaflet area, mean ± SD): porcine stented (37.3 ± 12.0 %), bovine stented (23.0 ± 8.9 %), porcine stentless (16.2 ± 7.6 %). Histological and ultrastructural investigation showed intrinsic calcification involving both the spongiosa and fibrosa with collagen fibrils, interfibrillar spaces and cells as early sites of calcification. There was clear evidence of apatite crystallization, and observations made with in vitro calcification were quite similar to those occurring with in vivo implanted bioprostheses. Conclusion: In vitro tests can reproduce intrinsic calcification of bioprostheses even in the absence of viable biologic host factors. Moreover, degree and sites of calcification have become predictable. This enables the development and evaluation of bioprostheses with reduction of animal experiments. From our results obtained with a broad range of available bioprostheses, stented bovine and stentless porcine valves seem to be superior to conventional stented porcine bioprostheses with regard to leaflet calcification.<

1 Presented at the D-A-CH Congress, February 10 - 13, 2000, Lucerne, Switzerland

References

  • 1 Logeais Y, Langanay T, Leguerrier A, Rioux C, Chaperon J, Coutte M B. Aortic Carpentier-Edwards supraannular porcine bioprosthesis: a 12-year experience.  Ann Thorac Surg. 1999;  68 (2) 421-425
  • 2 Legarra J J, Llorens R, Catalan M. et al . Eighteen-year follow up after Hancock II bioprosthesis insertion.  J Heart Valve Dis. 1999;  8 (1) 16-24
  • 3 Neville P H, Aupart M R, Diemont F F, Sirinelli A L, Lemoine E M, Marchand M A. Carpentier-Edwards pericardial bioprosthesis in aortic or mitral position: a 12-year experience.  Ann Thorac Surg. 1998;  66 (6) 143-147
  • 4 Fiane A E, Saatvedt K, Svennevig J L. Carpentier-Edwards bioprosthesis. Experiences of 17 years with analysis of risk factors of early mortality.  Scand Cardiovasc J. 1997;  31 (1) 39-44
  • 5 Hurle A, Meseguer J, Llamas P, Casillas J A. Clinical experience with the Carpentier-Edwards supra-annular porcine bioprosthesis implanted in the aortic position.  J Heart Valve Dis. 1998;  7 (3) 331-335
  • 6 Broom N D. Fatigue-induced damage in glutaraldehyde-preserved heart valve tissue.  J Thorac Cardiovasc Surg. 1978;  76 202-211
  • 7 Deck J D, Thubrikar M J, Nolan S P, Aouad J. Role of mechanical stress in calcification of bioprostheses. In: Cohn LH, Galucci B, editors. Cardiac bioprostheses. New York: Yorke Medical Books 1982: 292-305
  • 8 Thubrikar M J, Deck J D, Aouad D M. Role of mechanical stress in calcification of aortic bioprosthetic valves.  J Thorac Cardiovasc Surg. 1983;  86 115-125
  • 9 Schoen F J, Levy R J, Nelson A C, Bernhard W F, Nashef A, Hawley M. Onset and progression of experimental bioprosthetic heart valve calcification.  Lab Invest. 1985;  52 (5) 523-532
  • 10 Valente M, Bortolotti U, Thiene G. Ultrastructural substrates of dystrophic calcification in porcine bioprosthetic valve failure.  Am J Pathol. 1985;  119 (1) 12-21
  • 11 Neethling W M, Van Den Heever J J, Meyer J M, Barnard H C. Processing factors as determinants of tissue valve calcification.  J Cardiovasc Surg Torino. 1992;  33 (3) 285-291
  • 12 Dunmore Buyze J, Boughner D R, Macris N, Vesely I. A comparison of macroscopic lipid content within porcine pulmonary and aortic valves. Implications for bioprosthetic valves.  J Thorac Cardiovasc Surg. 1995;  110 (6) 1756-1761
  • 13 Carpentier A, Lemaigre G, Robert L, Carpentier S, Dubost C. Biological factors affecting long-term results of valvular heterografts.  J Thorac Cardiovasc Surg. 1969;  58 467-483
  • 14 Deiwick M, Glasmacher B, Zarubin A M. et al . Quality Control of Bioprosthetic Heart Valves by Means of Holographic Interferometry.  J Heart Valve Dis. 1996;  5 441-447
  • 15 Glasmacher B, Deiwick M, Reul H, Rau G. In vitro calcification of bioprosthetic heart valves: A new in vitro test method.  Int J Artif Org. 1996;  19 535
  • 16 Zarubin A M, Geiger A W, von Bally G, Scheld H H. Non-destructive evaluation techniques for prosthetic heart valves based on hologram interferometry.  Part I. J Heart Valve Dis. 1993;  2 (6) 440-447
  • 17 Deiwick M, Glasmacher B, Baba H A. et al . In vitro testing of bioprostheses: influence of mechanical stresses and lipids on calcification.  Ann Thorac Surg. 1998;  66 (6) 206-211
  • 18 FDA. FDS's Heart Valve Guidance: Replacement Heart Valve Guide. 4 ed. Rockville 1993
  • 19 Eric Jamieson W R, Marchand M A, Pelletier C L. et al . Structural valve deterioration in mitral replacement surgery: comparison of Carpentier-Edwards supra-annular porcine and perimount pericardial bioprostheses.  J Thorac Cardiovasc Surg. 1999;  118 (2) 297-304
  • 20 Jamieson W R E, Munro A I, Miyagishima R T, Allen P, Burr L H, Tyers G F. Carpentier-Edwards standard porcine bioprosthesis: clinical performance to seventeen years.  Ann Thorac Surg. 1996;  60 999-1007
  • 21 Schoen F J, Levy R J. Calcification of bioprosthetic heart valves. In: Bodnar E, Frater RWM, editors. Replacement cardiac valves. New York: Pergamon Press 1991: 125-148
  • 22 Sabbah H N, Hamid M S, Stein P D. Mechanical factors in the degeneration of porcine bioprosthetic valves: an overview.  J Card Surg. 1989;  4 (4) 302-309
  • 23 Bodnar E. The Potential of Holographic Interferometry in the Quality Assurance of Bioprosthetic Valves. (Editorial).  J Heart Valve Dis. 1996;  5 439-440
  • 24 Bernacca G M, Mackay T G, Wheatley D J. In vitro calcification studies on bovine pericardial heart valves. In: Gabbay S, Frater RWM, editors. New Horizons and the Future of Heart Valve Biotrostheses. - Is Glutaraldehyde a Villain?. Austin: Silent Partners 1994 1 ed: 25-40
  • 25 Bernacca G M, Mackay T G, Wilkinson R, Wheatley D J. Calcification and fatigue failure in a polyurethane heart value.  Biomaterials. 1995;  16 (4) 279-285
  • 26 Valente M, Pettenazzo E, Thiene G. et al . Detoxified glutaraldehyde cross-linked pericardium: tissue preservation and mineralization mitigation in a subcutaneous rat model.  J Heart Valve Dis. 1998;  7 (3) 283-291
  • 27 Mako W J, Vesely I. In vivo and in vitro models of calcification in porcine aortic valve cusps.  J Heart Valve Dis. 1997;  6 (3) 316-323
  • 28 Quintero L J, Lohre J M, Hernandez N. et al . Evaluation of in vivo models for studying calcification behavior of commercially available bovine pericardium.  J Heart Valve Dis. 1998;  7 (3) 262-267
  • 29 Herijgers P, Ozaki S, Verbeken E. et al . Calcification characteristics of porcine stentless valves in juvenile sheep.  Eur J Cardiothorac Surg. 1999;  15 (2) 134-142
  • 30 Chanda J, Kuribayashi R, Abe T. Valved conduit in the descending thoracic aorta in juvenile sheep: a useful, cost-effective model for accelerated calcification study in systemic circulation.  Biomaterials. 1997;  18 (19) 1317-1321
  • 31 Caimmi P P, Di Summa M, Galloni M. et al . Twelve-year follow up with the Sorin Pericarbon bioprosthesis in the mitral position.  J Heart Valve Dis. 1998;  7 (4) 400-406
  • 32 Kon N D, Cordell A R, Adair S M, Dobbins J E, Kitzman D W. Aortic root replacement with the freestyle stentless porcine aortic root bioprosthesis.  Ann Thorac Surg. 1999;  67 (6) 1609-1615
  • 33 David T E. Aortic valve replacement with stentless porcine bioprostheses.  J Card Surg. 1998;  13 (5) 344-351
  • 34 Garlick R B, MF O B. The Cryolife-O'Brien composite stentless porcine aortic xenograft valve in 118 patients.   Jpn Circ J. 1997;  61 (8) 682-686
  • 35 Konertz W, Sidiropoulos A, Schwammenthal E, Breithardt G, Scheld H H. Aortenklappenersatz mit gerüstfreien Xenografts.  Z Herz Thorax Gefäßchir. 1992;  6 (Suppl I) 57-60
  • 36 Schoen F J, Golomb G, Levy R J. Calcification of bioprosthetic heart valves: A perspective on models.  J Herat Valve Dis. 1992;  1 110-114
  • 37 Majno G, Joris I. Cells, tissues and disease: principles of general pathology.  Cambridge, MA: Blackwell Science. 1996;  229
  • 38 Anderson H C. Normal and abnormal mineralization in mammals.  Trans Am Soc Artif Org. 1981;  27 702

1 Presented at the D-A-CH Congress, February 10 - 13, 2000, Lucerne, Switzerland

PD Dr. med. Michael Deiwick

Klinik und Poliklinik für Thorax-, Herz- und Gefäßchirurgie
Westfälische Wilhelms-Universität

Albert-Schweitzer-Straße 33

48129 Münster

Germany

Phone: ++49/251/ 834 7401

Fax: ++49/251 / 834 8316

    >