CC BY-NC-ND 4.0 · Semin Musculoskelet Radiol 2023; 27(06): 601-617
DOI: 10.1055/s-0043-1775744
Review Article

A Practical Guide to Sigma-1 Receptor Positron Emission Tomography/Magnetic Resonance Imaging: A New Clinical Molecular Imaging Method to Identify Peripheral Pain Generators in Patients with Chronic Pain

Bin Shen
1   Cyclotron Radiochemistry Facility, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
,
Daehyun Yoon
2   Department of Radiology, University of California San Francisco School of Medicine, San Francisco, California
,
Jessa Castillo
3   Radiochemistry Facility, University of California San Francisco School of Medicine, San Francisco, California
,
Sandip Biswal
4   Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
› Author Affiliations

Abstract

Accurately identifying the peripheral pain generator in patients with chronic pain remains a major challenge for modern medicine. Millions of patients around the world suffer endlessly from difficult-to-manage debilitating pain because of very limited diagnostic tests and a paucity of pain therapies. To help these patients, we have developed a novel clinical molecular imaging approach, and, in its early stages, it has been shown to accurately identify the exact site of pain generation using an imaging biomarker for the sigma-1 receptor and positron emission tomography/magnetic resonance imaging. We hope the description of the work in this article can help others begin their own pain imaging programs at their respective institutions.



Publication History

Article published online:
07 November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Davis MP, Walsh D. Cancer pain: how to measure the fifth vital sign. Cleve Clin J Med 2004; 71 (08) 625-632
  • 2 Cendán CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM. Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol 2005; 511 (01) 73-74
  • 3 Kim HW, Roh DH, Yoon SY. et al. Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol 2008; 154 (05) 1125-1134
  • 4 Puente B, Nadal X, Portillo-Salido E. et al. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 2009; 145 (03) 294-303
  • 5 Roh DH, Yoon SY, Seo HS. et al. Sigma-1 receptor-induced increase in murine spinal NR1 phosphorylation is mediated by the PKCalpha and epsilon, but not the PKCzeta, isoforms. Neurosci Lett 2010; 477 (02) 95-99
  • 6 Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol 2013; 716 (1-3): 78-93
  • 7 Hjørnevik T, Cipriano PW, Shen B. et al. Biodistribution and radiation dosimetry of 18F-FTC-146 in humans. J Nucl Med 2017; 58 (12) 2004-2009
  • 8 James ML, Shen B, Nielsen CH. et al. Evaluation of σ-1 receptor radioligand 18F-FTC-146 in rats and squirrel monkeys using PET. J Nucl Med 2014; 55 (01) 147-153
  • 9 Shen B, Behera D, James ML. et al. Visualizing nerve injury in a neuropathic pain model with [18F]FTC-146 PET/MRI. Theranostics 2017; 7 (11) 2794-2805
  • 10 Cipriano PW, Lee SW, Yoon D. et al. Successful treatment of chronic knee pain following localization by a sigma-1 receptor radioligand and PET/MRI: a case report. J Pain Res 2018; 11: 2353-2357
  • 11 Yoon D, Cipriano P, Hjoernevik T. et al. Management of complex regional pain syndrome (CRPS) with p18[F]FTC-146 PET/MRI. Proceedings of the International Society for Magnetic Resonance in Medicine. 2017. Available at: https://cds.ismrm.org/protected/17MProceedings/PDFfiles/1164.html Accessed September 1, 2023
  • 12 Kim FJ, Kovalyshyn I, Burgman M, Neilan C, Chien CC, Pasternak GW. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 2010; 77 (04) 695-703
  • 13 Jerčić L, Kostić S, Vitlov Uljević M, Vukušić Pušić T, Vukojević K, Filipović N. Sigma-1 receptor expression in DRG neurons during a carrageenan-provoked inflammation. Anat Rec (Hoboken) 2019; 302 (09) 1620-1627
  • 14 Kwon SG, Roh DH, Yoon SY. et al. Role of peripheral sigma-1 receptors in ischaemic pain: potential interactions with ASIC and P2X receptors. Eur J Pain 2016; 20 (04) 594-606
  • 15 Bruna J, Videla S, Argyriou AA. et al. Efficacy of a novel sigma-1 receptor antagonist for oxaliplatin-induced neuropathy: a randomized, double-blind, placebo-controlled phase IIa clinical trial. Neurotherapeutics 2018; 15 (01) 178-189
  • 16 Gris G, Merlos M, Vela JM, Zamanillo D, Portillo-Salido E. S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund's adjuvant models in mice. Behav Pharmacol 2014; 25 (03) 226-235
  • 17 Gris G, Portillo-Salido E, Aubel B. et al. The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats. Sci Rep 2016; 6: 24591
  • 18 Nieto FR, Cendán CM, Cañizares FJ. et al. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 2014; 10: 11
  • 19 Ortíz-Rentería M, Juárez-Contreras R, González-Ramírez R. et al. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain. Proc Natl Acad Sci U S A 2018; 115 (07) E1657-E1666
  • 20 Pan B, Guo Y, Kwok WM, Hogan Q, Wu HE. Sigma-1 receptor antagonism restores injury-induced decrease of voltage-gated Ca2+ current in sensory neurons. J Pharmacol Exp Ther 2014; 350 (02) 290-300
  • 21 Rodríguez-Muñoz M, Sánchez-Blázquez P, Herrero-Labrador R. et al. The σ1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control. Antioxid Redox Signal 2015; 22 (10) 799-818
  • 22 Tejada MA, Montilla-García A, Sánchez-Fernández C. et al. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl) 2014; 231 (19) 3855-3869
  • 23 Stone JM, Arstad E, Erlandsson K, Waterhouse RN, Ell PJ, Pilowsky LS. [123I]TPCNE–a novel SPET tracer for the sigma-1 receptor: first human studies and in vivo haloperidol challenge. Synapse 2006; 60 (02) 109-117
  • 24 Sandberg AA, Stone JF. The Genetics and Molecular Biology of Neural Tumors. Totowa, NJ: Humana Press; 2008
  • 25 Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Primers 2017; 3: 17004
  • 26 Asthagiri AR, Parry DM, Butman JA. et al. Neurofibromatosis type 2. Lancet 2009; 373 (9679): 1974-1986
  • 27 Evans DG, Bowers NL, Tobi S. et al. Schwannomatosis: a genetic and epidemiological study. J Neurol Neurosurg Psychiatry 2018; 89 (11) 1215-1219
  • 28 National Institute of Neuological Disorders and Stroke. Neurofibromatosis Fact Sheet. Bethesda, MD: National Institute of Neurological Disorders and Stroke; 2020
  • 29 Garwood MM, Bernacki JM, Fine KM, Hainsworth KR, Davies WH, Klein-Tasman BP. Physical, cognitive, and psychosocial predictors of functional disability and health-related quality of life in adolescents with neurofibromatosis-1. Pain Res Treat 2012; 2012: 975364
  • 30 Wolters PL, Burns KM, Martin S. et al. Pain interference in youth with neurofibromatosis type 1 and plexiform neurofibromas and relation to disease severity, social-emotional functioning, and quality of life. Am J Med Genet A 2015; 167A (09) 2103-2113
  • 31 Crawford HA, Barton B, Wilson MJ. et al. The impact of neurofibromatosis type 1 on the health and wellbeing of Australian adults. J Genet Couns 2015; 24 (06) 931-944
  • 32 Buono FD, Grau LE, Sprong ME, Morford KL, Johnson KJ, Gutmann DH. Pain symptomology, functional impact, and treatment of people with neurofibromatosis type 1. J Pain Res 2019; 12: 2555-2561
  • 33 Wilson TJ, Hamrick F, Alzahrani S. et al. Analysis of the effect of intraoperative neuromonitoring during resection of benign nerve sheath tumors on gross total resection and neurological complications. J Neurosurg 2021; 135 (04) 1231-1240
  • 34 Yoon D, Xu Y, Cipriano PW. et al. Neurovascular, muscle, and skin changes on [18F]FDG PET/MRI in complex regional pain syndrome of the foot: a prospective clinical study. Pain Med 2022; 23 (02) 339-346
  • 35 Koes BW, van Tulder MW, Thomas S. Diagnosis and treatment of low back pain. BMJ 2006; 332 (7555): 1430-1434
  • 36 Deyo RA, Weinstein JN. Low back pain. N Engl J Med 2001; 344 (05) 363-370
  • 37 Henschke N, Maher CG, Refshauge KM. et al. Prevalence of and screening for serious spinal pathology in patients presenting to primary care settings with acute low back pain. Arthritis Rheum 2009; 60 (10) 3072-3080
  • 38 Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet 2017; 389 (10070): 736-747
  • 39 Brinjikji W, Luetmer PH, Comstock B. et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 2015; 36 (04) 811-816
  • 40 Takatalo J, Karppinen J, Niinimäki J. et al. Association of Modic changes, Schmorl's nodes, spondylolytic defects, high-intensity zone lesions, disc herniations, and radial tears with low back symptom severity among young Finnish adults. Spine 2012; 37 (14) 1231-1239
  • 41 Adams NJ, Plane MB, Fleming MF, Mundt MP, Saunders LA, Stauffacher EA. Opioids and the treatment of chronic pain in a primary care sample. J Pain Symptom Manage 2001; 22 (03) 791-796
  • 42 Reid MC, Engles-Horton LL, Weber MB, Kerns RD, Rogers EL, O'Connor PG. Use of opioid medications for chronic noncancer pain syndromes in primary care. J Gen Intern Med 2002; 17 (03) 173-179
  • 43 Ashworth J, Green DJ, Dunn KM, Jordan KP. Opioid use among low back pain patients in primary care: is opioid prescription associated with disability at 6-month follow-up?. Pain 2013; 154 (07) 1038-1044
  • 44 Hills JM, Pennings JS, Archer KR. et al. Preoperative opioids and 1-year patient reported outcomes after spine surgery. Spine (Phila Pa 1976) 2019; 44 (12) 887-895
  • 45 Deyo RA, Smith DH, Johnson ES. et al. Opioids for back pain patients: primary care prescribing patterns and use of services. J Am Board Fam Med 2011; 24 (06) 717-727
  • 46 Faour M, Anderson JT, Haas AR. et al. Prolonged preoperative opioid therapy associated with poor return to work rates after single-level cervical fusion for radiculopathy for patients receiving workers' compensation benefits. Spine 2017; 42 (02) E104-E110
  • 47 Lee D, Armaghani S, Archer KR. et al. Preoperative opioid use as a predictor of adverse postoperative self-reported outcomes in patients undergoing spine surgery. j Bone Joint Surg Am 2014; 96 (11) e89
  • 48 Farrar JT, Portenoy RK, Berlin JA, Kinman JL, Strom BL. Defining the clinically important difference in pain outcome measures. Pain 2000; 88 (03) 287-294
  • 49 Melzack R. The short-form McGill Pain Questionnaire. Pain 1987; 30 (02) 191-197
  • 50 Ikeuchi M, Izumi M, Aso K, Sugimura N, Tani T. Clinical characteristics of pain originating from intra-articular structures of the knee joint in patients with medial knee osteoarthritis. Springerplus 2013; 2: 628