CC BY 4.0 · Arq Neuropsiquiatr 2023; 81(06): 533-543
DOI: 10.1055/s-0043-1768669
Original Article

AQP4-IgG NMOSD, MOGAD, and double-seronegative NMOSD: is it possible to depict the antibody subtype using magnetic resonance imaging?

NMOSD AQP4-IgG, MOGAD e NMOSD duplo soronegativo: é possível caracterizar o tipo de anticorpo pela ressonância magnética?
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil.
,
2   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
,
2   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
,
2   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
,
3   Pontifícia Universidade Católica do Rio Grande do Sul, Instituto do Cérebro do Rio Grande do Sul (InsCer), Porto Alegre RS, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil.
› Author Affiliations

Abstract

Background There is clinical and radiological overlap among demyelinating diseases. However, their pathophysiological mechanisms are different and carry distinct prognoses and treatment demands.

Objective To investigate magnetic resonance imaging (MRI) features of patients with myelin-oligodendrocyte glycoprotein associated disease (MOGAD), antibody against aquaporin-4(AQP-4)-immunoglobulin G-positive neuromyelitis optica spectrum disorder (AQP4-IgG NMOSD), and double-seronegative patients.

Methods A cross-sectional retrospective study was performed to analyze the topography and morphology of central nervous system (CNS) lesions. Two neuroradiologists consensually analyzed the brain, orbit, and spinal cord images.

Results In total, 68 patients were enrolled in the study (25 with AQP4-IgG-positive NMOSD, 28 with MOGAD, and 15 double-seronegative patients). There were differences in clinical presentation among the groups. The MOGAD group had less brain involvement (39.2%) than the NMOSD group (p = 0.002), mostly in the subcortical/juxtacortical, the midbrain, the middle cerebellar peduncle, and the cerebellum. Double-seronegative patients had more brain involvement (80%) with larger and tumefactive lesion morphology. In addition, double-seronegative patients showed the longest optic neuritis (p = 0.006), which was more prevalent in the intracranial optic nerve compartment. AQP4-IgG-positive NMOSD optic neuritis had a predominant optic-chiasm location, and brain lesions mainly affected hypothalamic regions and the postrema area (MOGAD versus AQP4-IgG-positive NMOSD, p= 0 .013). Furthermore, this group had more spinal cord lesions (78.3%), and bright spotty lesions were a paramount finding to differentiate it from MOGAD (p = 0.003).

Conclusion The pooled analysis of lesion topography, morphology, and signal intensity provides critical information to help clinicians form a timely differential diagnosis.

Resumo

Antecedentes Há sobreposição clínica e radiológica entre as doenças desmielinizantes. No entanto, seus mecanismos fisiopatológicos são diferentes e apresentam prognósticos e demandas de tratamento distintos.

Objetivo Investigar as características de imagens de RM dos pacientes com doença associada à glicoproteína de oligodendrócito de mielina (MOGAD), a doenças do espectro da neuromielite óptica positivas para antiaquaporina-4 imunoglobulina G (AQP4-IgG NMOSD), e pacientes duplamente soronegativos.

Métodos Estudo retrospectivo e transversal para analisar as características e frequência das lesões do sistema nervoso central (SNC). Dois neurorradiologistas avaliaram consensualmente as imagens do cérebro, das órbitas e da medula espinhal.

Resultados Ao todo, foram incluídos 68 pacientes(25 com AQP4-IgG NMOSD, 28 com MOGAD e 15 duplo-soronegativos). Há diferenças na apresentação clínica entre os grupos. O grupo MOGAD demonstrou menor frequência de comprometimento do cérebro (39.2%) comparado com o AQP4-IgG NMOSD (p = 0.002), com predomínio da distribuição das lesões nas regiões subcortical/justacortical, mesencéfalo, pedúnculos cerebelares médios e cerebelo. O grupo duplo-soronegativo demonstrou maior frequência de comprometimento do cérebro (80%), com lesões de maiores dimensões e com morfologia tumefeita, além de neurite óptica com maior extensão (p = 0.006). O grupo AQP4-IgG NMOSD demonstrou neurite óptica com predomínio na região óptico-quiasmática e as lesões encefálicas acometeram predominantemente as regiões hipotalâmica e área postrema (MOGAD versus AQP4-IgG NMOSD p = 0.013). Além disso, foram observadas mais lesões na medula espinhal (78.3%) e a presença da “bright spotty lesion” foi um achado primordial para a sua diferenciação com os pacientes MOGAD (p = 0.003).

Conclusão A análise pormenorizada das características das lesões por RM dos pacientes com doenças desmielinizantes imunomediadas fornece informações fundamentais que auxiliam os médicos no diagnóstico diferencial em um momento oportuno.

Authors' Contributions

LMOPS, DCF, CMR: substantial contributions to the design and development of the study; DCF, LMOPS, SLQP: substantial contributions in the collection, analysis, and interpretation of data; DCF, DC, DKS, CMR: substantial contributions in the writing of the article, and in its critical revision; All authors: substantial contributions in the approval of the final version.


Supplementary Material



Publication History

Received: 02 November 2022

Accepted: 06 February 2023

Article published online:
28 June 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Lennon VA, Wingerchuk DM, Kryzer TJ. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004; 364 (9451): 2106-2112
  • 2 Dutra BG, da Rocha AJ, Nunes RH, Maia ACM. Neuromyelitis Optica Spectrum Disorders: Spectrum of MR Imaging Findings and Their Differential Diagnosis. Radiographics 2018; 38 (01) 169-193
  • 3 Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013; 14 (04) 265-277
  • 4 Wingerchuk DM, Banwell B, Bennett JL. et al; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (02) 177-189
  • 5 Sato DK, Callegaro D, Lana-Peixoto MA. et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 2014; 82 (06) 474-481
  • 6 Jarius S, Paul F, Aktas O. et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation 2018; 15 (01) 134
  • 7 Carandini T, Sacchi L, Bovis F. et al. Distinct patterns of MRI lesions in MOG antibody disease and AQP4 NMOSD: a systematic review and meta-analysis. Mult Scler Relat Disord 2021; 54: 103118
  • 8 Fadda G, Armangue T, Hacohen Y, Chitnis T, Banwell B. Paediatric multiple sclerosis and antibody-associated demyelination: clinical, imaging, and biological considerations for diagnosis and care. Lancet Neurol 2021; 20 (02) 136-149
  • 9 Spadaro M, Gerdes LA, Krumbholz M. et al. Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3 (05) e257
  • 10 Jarius S, Ruprecht K, Kleiter I. et al; in cooperation with the Neuromyelitis Optica Study Group (NEMOS). MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016; 13 (01) 280
  • 11 Schmidt FA, Chien C, Kuchling J. et al. Differences in Advanced Magnetic Resonance Imaging in MOG-IgG and AQP4-IgG Seropositive Neuromyelitis Optica Spectrum Disorders: A Comparative Study. Front Neurol 2020; 11: 499910
  • 12 Lana-Peixoto MA, Talim N. Neuromyelitis Optica Spectrum Disorder and Anti-MOG Syndromes. Biomedicines 2019; 7 (02) 42
  • 13 Dos Passos GR, Oliveira LM, da Costa BK. et al. MOG-IgG-Associated Optic Neuritis, Encephalitis, and Myelitis: Lessons Learned From Neuromyelitis Optica Spectrum Disorder. Front Neurol 2018; 9: 217
  • 14 Oliveira LM, Apóstolos-Pereira SL, Pitombeira MS, Bruel Torretta PH, Callegaro D, Sato DK. Persistent MOG-IgG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis. Mult Scler 2019; 25 (14) 1907-1914
  • 15 Mader S, Kümpfel T, Meinl E. Novel insights into pathophysiology and therapeutic possibilities reveal further differences between AQP4-IgG- and MOG-IgG-associated diseases. Curr Opin Neurol 2020; 33 (03) 362-371
  • 16 Jurynczyk M, Geraldes R, Probert F. et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain 2017; 140 (03) 617-627
  • 17 Marignier R, Hacohen Y, Cobo-Calvo A. et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol 2021; 20 (09) 762-772
  • 18 Cobo-Calvo A, Ruiz A, Maillart E. et al; OFSEP and NOMADMUS Study Group. Clinical spectrum and prognostic value of CNS MOG autoimmunity in adults: The MOGADOR study. Neurology 2018; 90 (21) e1858-e1869
  • 19 Cai M-T, Zheng Y, Shen C-H. et al. Evaluation of brain and spinal cord lesion distribution criteria at disease onset in distinguishing NMOSD from MS and MOG antibody-associated disorder. Mult Scler 2021; 27 (06) 871-882
  • 20 Salama S, Khan M, Shanechi A, Levy M, Izbudak I. MRI differences between MOG antibody disease and AQP4 NMOSD. Mult Scler 2020; 26 (14) 1854-1865
  • 21 Chen C, Liu C, Fang L. et al. Different magnetic resonance imaging features between MOG antibody- and AQP4 antibody-mediated disease: A Chinese cohort study. J Neurol Sci 2019; 405: 116430
  • 22 Sechi E, Krecke KN, Messina SA. et al. Comparison of MRI Lesion Evolution in Different Central Nervous System Demyelinating Disorders. Neurology 2021; 97 (11) e1097-e1109
  • 23 Dubey D, Pittock SJ, Krecke KN. et al. Clinical, Radiologic, and Prognostic Features of Myelitis Associated With Myelin Oligodendrocyte Glycoprotein Autoantibody. JAMA Neurol 2019; 76 (03) 301-309
  • 24 Shor N, Deschamps R, Cobo Calvo A. et al; NOMADMUS study group. MRI characteristics of MOG-Ab associated disease in adults: An update. Rev Neurol (Paris) 2021; 177 (1-2): 39-50
  • 25 Ringelstein M, Ayzenberg I, Lindenblatt G. et al; Neuromyelitis Optica Study Group (NEMOS). Interleukin-6 Receptor Blockade in Treatment-Refractory MOG-IgG-Associated Disease and Neuromyelitis Optica Spectrum Disorders. Neurol Neuroimmunol Neuroinflamm 2021; 9 (01) e1100