OP-Journal 2016; 32(03): 241-246
DOI: 10.1055/s-0042-123202
Artikel zum Leitthema
Georg Thieme Verlag KG Stuttgart · New York

Einsatz von im Laserschmelzverfahren hergestellten patientenspezifischen Implantaten in der Mund-, Kiefer- und Gesichtschirurgie

Patient-Specific Implants Prepared in the Laser Fusion Procedure: Use in Oral, Maxillary and Facial Surgery
Majeed Rana
,
Benjamin Singh
,
Nils-Claudius Gellrich
Further Information

Publication History

Publication Date:
24 March 2017 (online)

Zusammenfassung

Heutzutage stehen modernste Techniken zur Verfügung, durch die mithilfe einer digitalen präoperativen Planung patientenspezifische Implantate (PSI) hergestellt werden können. Vorrangig ist hier das selektive Laserschmelzverfahren auf Titanpulverbasis zu nennen, das sowohl zur Herstellung patientenspezifischer Implantate beliebiger Geometrie und innerer Struktur für Orbita- und Mittelgesichtsrekonstruktionen als auch für jede andere anatomische Region geeignet ist. Alternativ können virtuelle Planungen auch durch die CNC-Frästechnik (CNC: computerized numerical control), Spritz- oder Formentechniken in Implantate umgesetzt werden. Diese Innovationen führen zur Herstellung einer perfekt formstabilen patientenspezifischen Implantatgeometrie. Darüber hinaus kann das Einsetzen und die intraoperative Positionierung dieser Implantate mithilfe dieser Technik gesteuert werden, durch die der gesamte Kreislauf der präoperativen Defektanalyse, patientenspezifischen Implantatherstellung und Insertion von Implantaten qualitätsgesichert werden kann.

Abstract

Highly modern techniques are available for computer-supported preoperative digital planning of the direct fabrication of patient-specific implants (PSI). The laser fusion procedure is suitable for producing patient-specific implants of any geometry and internal structure for orbital and midface reconstructions, but also for any other anatomical region, all based on titanium powder. These digital plans can control CNC milling (CNC: computerized numerical control) cutters or lead to implants produced by spraying or moulding techniques. This innovation leads to the production of perfectly formed and stable patient-specific orbital implants of the required geometry. The insertion and intraoperative positioning of these implants can be controlled using this technique to ensure the quality of the entire process: preoperative defect analysis, patient-specific production of implants, and insertion of implants.

 
  • Literatur

  • 1 Burge J, Saber NR, Looi T. et al. Application of CAD/CAM prefabricated age-matched templates in cranio-orbital remodeling in craniosynostosis. J Craniofac Surg 2011; 22: 1810-1813
  • 2 Carl AL, Khanuja HS, Sachs BL. et al. In vitro simulation. Early results of stereotaxy for pedicle screw placement. Spine (Phila Pa 1976) 1997; 22: 1160-1164
  • 3 Chim H, Wetjen N, Mardini S. Virtual surgical planning in craniofacial surgery. Semin Plast Surg 2014; 28: 150-158
  • 4 Eckardt A, Swennen GR. Virtual planning of composite mandibular reconstruction with free fibula bone graft. J Craniofac Surg 2005; 16: 1137-1140
  • 5 Essig H, Dressel L, Rana M. et al. Precision of posttraumatic primary orbital reconstruction using individually bent titanium mesh with and without navigation: a retrospective study. Head Face Med 2013; 9: 18
  • 6 Gellrich NC, Schramm A, Hammer B. et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg 2002; 110: 1417-1429
  • 7 Hanasono MM, Jacob RF, Bidaut L. et al. Midfacial reconstruction using virtual planning, rapid prototype modeling, and stereotactic navigation. Plast Reconstr Surg 2010; 126: 2002-2006
  • 8 Khechoyan DY, Saber NR, Burge J. et al. Surgical outcomes in craniosynostosis reconstruction: the use of prefabricated templates in cranial vault remodelling. J Plast Reconstr Aesthet Surg 2014; 67: 9-16
  • 9 Kokemüller H, See C, Essig H. et al. Rekonstruktion komplexer Mittelgesichtsdefekte durch individualisierte Titanimplantate. HNO 2011; 59: 319-326
  • 10 Lauer G, Pradel W, Schneider M. et al. Sekundäre Mittelgesichtsrekonstruktion mittels verschiedener Operationsverfahren unter Nutzung der computergestützten Chirurgie. Mund Kiefer GesichtsChir 2006; 10: 325-329
  • 11 Mardini S, Alsubaie S, Cayci C. et al. Three-dimensional preoperative virtual planning and template use for surgical correction of craniosynostosis. J Plast Reconstr Aesthet Surg 2014; 67: 336-343
  • 12 Merloz P, Tonetti J, Pittet L. et al. Computer-assisted spine surgery. Comput Aided Surg 1998; 3: 297-305
  • 13 Miller RJ, Bier J. Surgical navigation in oral implantology. Implant Dent 2006; 15: 41-47
  • 14 Miller RJ. Navigated surgery in oral implantology: a case study. Int J Med Robot 2007; 3: 229-234
  • 15 Mommaerts MY, Jans G, Sloten JV. et al. On the assets of CAD planning for craniosynostosis surgery. J Craniofac Surg 2001; 12: 547-554
  • 16 Pappa H, Richardson D, Webb AA. et al. Individualized template-guided remodeling of the fronto-orbital bandeau in craniosynostosis corrective surgery. J Craniofac Surg 2009; 20: 178-179
  • 17 Rana M, Warraich R, Kokemüller H. et al. Reconstruction of mandibular defects – clinical retrospective research over a 10-year period. Head Neck Oncol 2011; 3: 23
  • 18 Schmelzeisen R, Schramm A. Computer-assisted reconstruction of the facial skeleton. Arch Facial Plast Surg 2003; 5: 437
  • 19 Schramm A, Gellrich NC. Intraoperative Navigation und computerassistierte Chirurgie. In: Schwenzer N. Hrsg. Mund-Kiefer-Gesichtschirurgie. Stuttgart: Thieme; 2011
  • 20 Schramm A, Gellrich NC, Naumann S. et al. Non-invasive referencing in computer-assisted surgery. MBEC 1999; 37: 644-645
  • 21 Schramm A, Gellrich NC, Schön R. et al. Advantages of computer-assited Surgery in the Treatment of cranio-maxillofacial Tumors. In: Lemke HU, Vannier MW, Inamura K, Farman AG. eds. CARS’99 – Proceedings of the 13th Int. Congress and Exhibition, Paris 23.–26. 6. 1999. Amsterdam: Elsevier; 1999: 903-907
  • 22 Schramm A, Gellrich NC, Schmelzeisen R. Navigational surgery of the facial skeleton. Berlin, Heidelberg, New York: Springer; 2006
  • 23 Schramm A, Wilde F. Die computergestützte Gesichtsschädelrekonstruktion. HNO 2011; 59: 800-806
  • 24 Seruya M, Borsuk DE, Khalifian S. et al. Computer-aided design and manufacturing in craniosynostosis surgery. J Craniofac Surg 2013; 24: 1100-1105
  • 25 Terzic A, Scolozzi P. Image guided surgical navigation integrating “mirroring” computational planning based on intra-operative cone-beam CT imaging: a promising new approach for management of primary bilateral midfacial fractures. Comput Aided Surg 2011; 16: 170-180
  • 26 Vander Sloten J, Degryse K, Gobin R. et al. Interactive simulation of cranial surgery in a computer aided design environment. J Craniomaxillofac Surg 1996; 24: 122-129
  • 27 Xia JJ, Shevchenko L, Gateno J. et al. Outcome study of computer-aided surgical simulation in the treatment of patients with craniomaxillofacial deformities. J Oral Maxillofac Surg 2011; 69: 2014-2024
  • 28 Zizelmann C, Hammer B, Gellrich NC. et al. An evaluation of face-bow transfer for the planning of orthognathic surgery. J Oral Maxillofac Surg 2012; 70: 1944-1950