Synthesis 2020; 52(21): 3153-3161
DOI: 10.1055/s-0040-1707175
psp
© Georg Thieme Verlag Stuttgart · New York

Remote Deprotometalation-Iodolysis of N,N-Diisopropyl-2-trimethylsilylferrocenecarboxamide: A New Route Toward 1,1′-Disubstituted Ferrocenes

Lingaswamy Kadari
a   Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France   Email: william.erb@univ-rennes1.fr
b   Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Email: prkgenius@iict.res.in
,
Thierry Roisnel
a   Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France   Email: william.erb@univ-rennes1.fr
,
William Erb
a   Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France   Email: william.erb@univ-rennes1.fr
,
b   Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Email: prkgenius@iict.res.in
,
Florence Mongin
a   Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France   Email: william.erb@univ-rennes1.fr
› Author Affiliations
This work was supported by the Université de Rennes 1 and CNRS.
Further Information

Publication History

Received: 19 May 2020

Accepted after revision: 08 June 2020

Publication Date:
01 July 2020 (online)


Abstract

The 1,1′-disubstitution is currently the most frequent substitution pattern encountered in the ferrocene series. Here an original access based on the remote deprotometalation of N,N-diisopropyl-2-trimethylsilylferrocenecarboxamide is reported. The key intermediate, 1′-iodo-N,N-diisopropylferrocenecarboxamide, was prepared in multiple grams and was further functionalized toward fifteen 1′-substituted iodoferrocenes.

Supporting Information

 
  • References

    • 1a Kealy TJ, Pauson PL. Nature 1951; 168: 1039
    • 1b Miller SA, Tebboth JA, Tremaine JF. J. Chem. Soc. 1952; 632
    • 1c Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. Togni A, Hayashi T. VCH; Weinheim: 1995
    • 2a Chiral Ferrocenes in Asymmetric Catalysis . Dai L.-X, Hou X.-L. Wiley-VCH; Weinheim: 2010
    • 2b Zhu JC, Cui DX, Li YD, Jiang R, Chen WP, Wang PA. ChemCatChem 2018; 10: 907
    • 3a Ferrocenes: Ligands, Materials and Biomolecules . Štěpnička P. Wiley; Chichester: 2008
    • 3b Scottwell S. Ø, Crowley JD. Chem. Commun. 2016; 52: 2451
    • 3c Inkpen MS, Scheerer S, Linseis M, White AJ. P, Winter RF, Albrecht T, Long NJ. Nat. Chem. 2016; 8: 825
    • 4a Kirin SI, Kraatz H.-B, Metzler-Nolte N. Chem. Soc. Rev. 2006; 35: 348
    • 4b Singh A, Lumb I, Mehra V, Kumar V. Dalton Trans. 2019; 48: 2840
  • 5 Petrov AR, Jess K, Freytag M, Jones PG, Tamm M. Organometallics 2013; 32: 5946
  • 6 Erb W, Mongin F. Synthesis 2019; 51: 146
  • 7 Butenschön H. Synthesis 2018; 50: 3787
  • 8 Butler IR, Boyes AL, Kelly G, Quayle SC, Herzig T, Szewczyk J. Inorg. Chem. Commun. 1999; 2: 403
  • 9 Kleoff M, Schwan J, Boeser L, Hartmayer B, Christmann M, Sarkar B, Heretsch P. Org. Lett. 2020; 22: 902
    • 10a Roemer M, Kang YK, Chung YK, Lentz D. Chem. Eur. J. 2012; 18: 3371
    • 10b Roemer M, Donnadieu B, Nijhuis CA. Eur. J. Inorg. Chem. 2016; 1314
  • 11 Ilyashenko G, Al-Safadi R, Donnan R, Dubrovka R, Pancholi J, Watkinson M, Whiting A. RSC Adv. 2013; 3: 17081
  • 12 Wright ME. Organometallics 1990; 9: 853
  • 13 Inouye M, Hyodo Y, Nakazumi H. J. Org. Chem. 1999; 64: 2704
  • 14 Lai L.-L, Dong T.-Y. J. Chem. Soc., Chem. Commun. 1994; 2347
  • 15 Hall DW, Richards JH. J. Org. Chem. 1963; 28: 1549
    • 16a Guo J, Zhuang S, Chen S, Zhang S, Yuan Y. Chin. J. Org. Chem. 2009; 29: 1264
    • 16b Wu K.-Q, Guo J, Yan J.-F, Xie LL, Xu F.-B, Bai S, Nockemann P, Yuan Y.-F. Organometallics 2011; 30: 3504
  • 17 Iftime G, Moreau-Bossuet C, Manoury E, Balavoine GG. A. Chem. Commun. 1996; 527
  • 18 Chong JM, Hegedus LS. Organometallics 2004; 23: 1010
  • 19 Ingham SL, Khan MS, Lewis J, Long NJ, Raithby PR. J. Organomet. Chem. 1994; 470: 153
    • 20a Dong T.-Y, Chang S.-W, Lin S.-F, Lin M.-C, Wen Y.-S, Lee L. Organometallics 2006; 25: 2018
    • 20b Ma J, Vollmann M, Menzel H, Pohle S, Butenschön H. J. Inorg. Organomet. Polym. 2008; 18: 41
    • 20c Wilson LE, Hassenrück C, Winter RF, White AJ. P, Albrecht T, Long NJ. Eur. J. Inorg. Chem. 2017; 496
  • 21 Bakar MA, Sergeeva NN, Juillard T, Senge MO. Organometallics 2011; 30: 3225
  • 22 Schaarschmidt D, Lang H. Organometallics 2010; 29: 4196
  • 23 Szarka Z, Kuik Á, Skoda-Földes R, Kollár L. J. Organomet. Chem. 2004; 689: 2770
    • 24a Tazi M, Erb W, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V, Mongin F. Organometallics 2017; 36: 4770
    • 24b Erb W, Hurvois J.-P, Roisnel T, Dorcet V. Organometallics 2018; 37: 3780
    • 24c Tazi M, Hedidi M, Erb W, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V, Bentabed-Ababsa G, Mongin F. Organometallics 2018; 37: 2207
    • 24d Erb W, Roisnel T. Chem. Commun. 2019; 55: 9132
    • 24e Hedidi M, Dayaker G, Kitazawa Y, Tatsuya Y, Kimura M, Erb W, Bentabed-Ababsa G, Chevallier F, Uchiyama M, Gros PC, Mongin F. New J. Chem. 2019; 43: 14898
    • 24f Tazi M, Erb W, Roisnel T, Dorcet V, Mongin F, Low PJ. Org. Biomol. Chem. 2019; 27: 9352
  • 25 Tsukazaki M, Tinkl M, Roglans A, Chapell BJ, Taylor NJ, Snieckus V. J. Am. Chem. Soc. 1996; 118: 685
  • 26 Richards CJ, Damalidis T, Hibbs DE, Hursthouse MB. Synlett 1995; 74
  • 27 Erb W, Roisnel T, Dorcet V. Synthesis 2019; 51: 3205
  • 28 Ferber B, Top S, Welter R, Jaouen G. Chem. Eur. J. 2006; 12: 2081
    • 29a Togni A, Pastor SD. J. Org. Chem. 1990; 55: 1649
    • 29b Fukuzawa S.-i, Yamamoto M, Kikuchi S. J. Org. Chem. 2007; 72: 1514
  • 30 Routaboul L, Chiffre J, Balavoine GG. A, Daran J.-C, Manoury E. J. Organomet. Chem. 2001; 637-639: 364
    • 31a Anderson JC, Blake AJ, Arnall-Culliford JC. Org. Biomol. Chem. 2003; 1: 3586
    • 31b Anderson JC, Osborne J. Tetrahedron: Asymmetry 2005; 16: 931
  • 32 Erb W, Kadari L, Al-Mekhlafi K, Roisnel T, Dorcet V, Radha Krishna P, Mongin F. Adv. Synth. Catal. 2020; 362: 832
  • 33 Sharpless KB, Akashi K, Oshima K. Tetrahedron Lett. 1976; 2503
  • 34 Kivrak A, Zora M. J. Organomet. Chem. 2007; 692: 2346
  • 35 Brunner A, Taudien S, Riant O, Kagan HB. Chirality 1997; 9: 478
  • 36 Yamada S, Morizono D, Yamamoto K. Tetrahedron Lett. 1992; 33: 4329
  • 37 Erb W, Levanen G, Roisnel T, Dorcet V. New J. Chem. 2018; 42: 3808
  • 38 Metallinos C, Zaifman J, Dodge L. Org. Lett. 2008; 10: 3527
  • 39 Williams DB. G, Lawton M. J. Org. Chem. 2010; 75: 8351
  • 40 Burchat AF, Chong JM, Nielsen N. J. Organomet. Chem. 1997; 542: 281
  • 41 CCDC 2004798 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 42a Dong T.-Y, Ho P.-H, Chang C.-K. J. Chin. Chem. Soc. 2000; 47: 421
    • 42b Tisovský P, Mečiarová M, Šebesta R. Tetrahedron: Asymmetry 2011; 22: 536
    • 42c Pedotti S, Patti A. Tetrahedron 2012; 68: 3300