Semin Musculoskelet Radiol 2019; 23(03): 227-251
DOI: 10.1055/s-0039-1678729
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Conventional and Arthrographic Magnetic Resonance Techniques for Hip Evaluation: What the Radiologist Should Know

Florian Schmaranzer
1   Department of Orthopedic Surgery, Inselspital Bern, University of Bern, Bern, Switzerland
,
Luis Cerezal
2   Department of Radiology, Diagnóstico Médico Cantabria, Santander, Spain
,
Eva Llopis
3   Department of Radiology, Hospital de la Ribera, Alzira, Valencia, Spain
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2019 (online)

Abstract

Over the last 2 decades, the definition of pathomechanical concepts that link osseous deformities to chondrolabral damage and expose young and active patients to the risk of early osteoarthritis has led to a tremendous increase in the number of joint-preserving surgeries performed. The rise in arthroscopic procedures has led to an increasing demand for comprehensive preoperative magnetic resonance imaging (MRI) assessment of the hip joint. This includes conventional MRI for the assessment of extra-articular and periarticular pathologies such as greater trochanteric pain, deep gluteal pain syndrome, and sports injuries. Magnetic resonance arthrography with or without traction is reserved for the accurate evaluation of deformities associated with impingement and hip instability and for detecting the resulting intra-articular lesions. This article summarizes the current standard imaging techniques that the radiologist should know. It also explores the potential of computer-assisted analysis of three-dimensional MRI for virtual impingement simulation and volumetric analysis of cartilage composition and geometry.

 
  • References

  • 1 Llopis E, Higueras V, Vaño M, Altónaga JR. Anatomic and radiographic evaluation of the hip. Eur J Radiol 2012; 81 (12) 3727-3736
  • 2 Netter FH. Atlas d'anatomie humaine. 6th ed. Philadelphia, PA: Elsevier Saunders; 2015
  • 3 Ricci P-L, Maas S, Kelm J, Gerich T. Finite element analysis of the pelvis including gait muscle forces: an investigation into the effect of rami fractures on load transmission. J Exp Orthop 2018; 5 (01) 33
  • 4 Diel J, Ortiz O, Losada RA, Price DB, Hayt MW, Katz DS. The sacrum: pathologic spectrum, multimodality imaging, and subspecialty approach. Radiographics 2001; 21 (01) 83-104
  • 5 Robinson P, Salehi F, Grainger A. , et al. Cadaveric and MRI study of the musculotendinous contributions to the capsule of the symphysis pubis. AJR Am J Roentgenol 2007; 188 (05) W440-W445
  • 6 Stevens MA, El-Khoury GY, Kathol MH, Brandser EA, Chow S. Imaging features of avulsion injuries. Radiographics 1999; 19 (03) 655-672
  • 7 de Sa D, Alradwan H, Cargnelli S. , et al. Extra-articular hip impingement: a systematic review examining operative treatment of psoas, subspine, ischiofemoral, and greater trochanteric/pelvic impingement. Arthroscopy 2014; 30 (08) 1026-1041
  • 8 Singer G, Eberl R, Wegmann H, Marterer R, Kraus T, Sorantin E. Diagnosis and treatment of apophyseal injuries of the pelvis in adolescents. Semin Musculoskelet Radiol 2014; 18 (05) 498-504
  • 9 Jesse MK, Petersen B, Strickland C, Mei-Dan O. Normal anatomy and imaging of the hip: emphasis on impingement assessment. Semin Musculoskelet Radiol 2013; 17 (03) 229-247
  • 10 Sutter R, Zanetti M, Pfirrmann CWA. New developments in hip imaging. Radiology 2012; 264 (03) 651-667
  • 11 Byrne DP, Mulhall KJ, Baker JF. Anatomy & biomechanics of the hip. Open Sports Med J 2010; 4 (01) 51-57
  • 12 Bordalo-Rodrigues M, Rosenberg ZS. MR imaging of the proximal rectus femoris musculotendinous unit. Magn Reson Imaging Clin N Am 2005; 13 (04) 717-725
  • 13 Kassarjian A, Rodrigo RM, Santisteban JM. Current concepts in MRI of rectus femoris musculotendinous (myotendinous) and myofascial injuries in elite athletes. Eur J Radiol 2012; 81 (12) 3763-3771
  • 14 Bancroft LW, Blankenbaker DG. Imaging of the tendons about the pelvis. AJR Am J Roentgenol 2010; 195 (03) 605-617
  • 15 Lee KS, Rosas HG, Phancao J-P. Snapping hip: imaging and treatment. Semin Musculoskelet Radiol 2013; 17 (03) 286-294
  • 16 Llopis E, Fernandez E, Cerezal L. MR and CT arthrography of the hip. Semin Musculoskelet Radiol 2012; 16 (01) 42-56
  • 17 Huang BK, Campos JC, Michael Peschka PG. , et al. Injury of the gluteal aponeurotic fascia and proximal iliotibial band: anatomy, pathologic conditions, and MR imaging. Radiographics 2013; 33 (05) 1437-1452
  • 18 Blankenbaker DG, Tuite MJ. Non-femoroacetabular impingement. Semin Musculoskelet Radiol 2013; 17 (03) 279-285
  • 19 Pfirrmann CW, Chung CB, Theumann NH, Trudell DJ, Resnick D. Greater trochanter of the hip: attachment of the abductor mechanism and a complex of three bursae—MR imaging and MR bursography in cadavers and MR imaging in asymptomatic volunteers. Radiology 2001; 221 (02) 469-477
  • 20 Cvitanic O, Henzie G, Skezas N, Lyons J, Minter J. MRI diagnosis of tears of the hip abductor tendons (gluteus medius and gluteus minimus). AJR Am J Roentgenol 2004; 182 (01) 137-143
  • 21 Kassarjian A, Tomas X, Cerezal L, Canga A, Llopis E. MRI of the quadratus femoris muscle: anatomic considerations and pathologic lesions. AJR Am J Roentgenol 2011; 197 (01) 170-174
  • 22 Linklater JM, Hamilton B, Carmichael J, Orchard J, Wood DG. Hamstring injuries: anatomy, imaging, and intervention. Semin Musculoskelet Radiol 2010; 14 (02) 131-161
  • 23 Koulouris G, Connell D. Hamstring muscle complex: an imaging review. Radiographics 2005; 25 (03) 571-586
  • 24 Tuite DJ, Finegan PJ, Saliaris AP, Renström PA, Donne B, O'Brien M. Anatomy of the proximal musculotendinous junction of the adductor longus muscle. Knee Surg Sports Traumatol Arthrosc 1998; 6 (02) 134-137
  • 25 Agten CA, Sutter R, Buck FM, Pfirrmann CWA. Hip imaging in athletes: sports imaging series. Radiology 2016; 280 (02) 351-369
  • 26 Potter HG, Schachar J. High resolution noncontrast MRI of the hip. J Magn Reson Imaging 2010; 31 (02) 268-278
  • 27 Guerini H, Omoumi P, Guichoux F. , et al. Fat suppression with Dixon techniques in musculoskeletal magnetic resonance imaging: a pictorial review. Semin Musculoskelet Radiol 2015; 19 (04) 335-347
  • 28 Hernando MF, Cerezal L, Pérez-Carro L, Abascal F, Canga A. Deep gluteal syndrome: anatomy, imaging, and management of sciatic nerve entrapments in the subgluteal space. Skeletal Radiol 2015; 44 (07) 919-934
  • 29 Carro LP, Hernando MF, Cerezal L, Navarro IS, Fernandez AA, Castillo AO. Deep gluteal space problems: piriformis syndrome, ischiofemoral impingement and sciatic nerve release. Muscles Ligaments Tendons J 2016; 6 (03) 384-396
  • 30 Chhabra A, Chalian M, Soldatos T. , et al. 3-T high-resolution MR neurography of sciatic neuropathy. AJR Am J Roentgenol 2012; 198 (04) W357-W364
  • 31 Agnollitto PM, Chu MWK, Simão MN, Nogueira-Barbosa MH. Sciatic neuropathy: findings on magnetic resonance neurography. Radiol Bras 2017; 50 (03) 190-196
  • 32 Byrne CA, Bowden DJ, Alkhayat A, Kavanagh EC, Eustace SJ. Sports-related groin pain secondary to symphysis pubis disorders: correlation between MRI findings and outcome after fluoroscopy-guided injection of steroid and local anesthetic. AJR Am J Roentgenol 2017; 209 (02) 380-388
  • 33 Ducouret E, Reboul G, Dalmay F. , et al. MRI in chronic groin pain: sequence diagnostic reliability compared to systematic surgical assessment. Skeletal Radiol 2018; 47 (05) 649-660
  • 34 Mullens FE, Zoga AC, Morrison WB, Meyers WC. Review of MRI technique and imaging findings in athletic pubalgia and the “sports hernia.”. Eur J Radiol 2012; 81 (12) 3780-3792
  • 35 Murphy G, Foran P, Murphy D, Tobin O, Moynagh M, Eustace S. “Superior cleft sign” as a marker of rectus abdominus/adductor longus tear in patients with suspected sportsman's hernia. Skeletal Radiol 2013; 42 (06) 819-825
  • 36 Schilders E, Bharam S, Golan E. , et al. The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept. Knee Surg Sports Traumatol Arthrosc 2017; 25 (12) 3969-3977
  • 37 European Medicines Agency. PRAC confirms restrictions on the use of linear gadolinium agents. EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans. Available at: https://www.ema.europa.eu/en/medicines/human/referrals/gadolinium-containing-contrast-agents . Accessed December 16, 2018
  • 38 Bloem JL, Reidsma II. Bone and soft tissue tumors of hip and pelvis. Eur J Radiol 2012; 81 (12) 3793-3801
  • 39 Berkowitz JL, Potter HG. Advanced MRI techniques for the hip joint: focus on the postoperative hip. AJR Am J Roentgenol 2017; 209 (03) 534-543
  • 40 Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics 2014; 34 (04) E106-E132
  • 41 Müller GM, Lundin B, von Schewelov T, Müller MF, Ekberg O, Månsson S. Evaluation of metal artifacts in clinical MR images of patients with total hip arthroplasty using different metal artifact-reducing sequences. Skeletal Radiol 2015; 44 (03) 353-359
  • 42 Naraghi AM, White LM. Magnetic resonance imaging of joint replacements. Semin Musculoskelet Radiol 2006; 10 (01) 98-106
  • 43 White LM, Kim JK, Mehta M. , et al. Complications of total hip arthroplasty: MR imaging-initial experience. Radiology 2000; 215 (01) 254-262
  • 44 Sutter R, Pfirrmann CWA. Update on femoroacetabular impingement: what is new, and how should we assess it?. Semin Musculoskelet Radiol 2017; 21 (05) 518-528
  • 45 Schmaranzer F, Todorski IAS, Lerch TD, Schwab J, Cullmann-Bastian J, Tannast M. Intra-articular lesions: imaging and surgical correlation. Semin Musculoskelet Radiol 2017; 21 (05) 487-506
  • 46 Wylie JD, Peters CL, Aoki SK. Natural history of structural hip abnormalities and the potential for hip preservation. J Am Acad Orthop Surg 2018; 26 (15) 515-525
  • 47 Kolo FC, Charbonnier C, Pfirrmann CWA. , et al. Extreme hip motion in professional ballet dancers: dynamic and morphological evaluation based on magnetic resonance imaging. Skeletal Radiol 2013; 42 (05) 689-698
  • 48 Mandell JC, Marshall RA, Banffy MB, Khurana B, Weaver MJ. Arthroscopy after traumatic hip dislocation: a systematic review of intra-articular findings, correlation with magnetic resonance imaging and computed tomography, treatments, and outcomes. Arthroscopy 2018; 34 (03) 917-927
  • 49 Neckers AC, Polster JM, Winalski CS, Krebs VE, Sundaram M. Comparison of MR arthrography with arthroscopy of the hip for the assessment of intra-articular loose bodies. Skeletal Radiol 2007; 36 (10) 963-967
  • 50 Anwander H, Siebenrock KA, Tannast M, Steppacher SD. Labral reattachment in femoroacetabular impingement surgery results in increased 10-year survivorship compared with resection. Clin Orthop Relat Res 2017; 475 (04) 1178-1188
  • 51 Haefeli PC, Albers CE, Steppacher SD, Tannast M, Büchler L. What are the risk factors for revision surgery after hip arthroscopy for femoroacetabular impingement at 7-year followup?. Clin Orthop Relat Res 2017; 475 (04) 1169-1177
  • 52 Larson CM, Giveans MR, Stone RM. Arthroscopic debridement versus refixation of the acetabular labrum associated with femoroacetabular impingement: mean 3.5-year follow-up. Am J Sports Med 2012; 40 (05) 1015-1021
  • 53 Hanke MS, Steppacher SD, Anwander H, Werlen S, Siebenrock KA, Tannast M. What MRI findings predict failure 10 years after surgery for femoroacetabular impingement?. Clin Orthop Relat Res 2017; 475 (04) 1192-1207
  • 54 Krych AJ, King AH, Berardelli RL, Sousa PL, Levy BA. Is subchondral acetabular edema or cystic change on MRI a contraindication for hip arthroscopy in patients with femoroacetabular impingement?. Am J Sports Med 2016; 44 (02) 454-459
  • 55 Hartigan DE, Perets I, Yuen LC, Domb BG. Results of hip arthroscopy in patients with MRI diagnosis of subchondral cysts-a case series. J Hip Preserv Surg 2017; 4 (04) 324-331
  • 56 Steppacher SD, Huemmer C, Schwab JM, Tannast M, Siebenrock KA. Surgical hip dislocation for treatment of femoroacetabular impingement: factors predicting 5-year survivorship. Clin Orthop Relat Res 2014; 472 (01) 337-348
  • 57 Steppacher SD, Anwander H, Zurmühle CA, Tannast M, Siebenrock KA. Eighty percent of patients with surgical hip dislocation for femoroacetabular impingement have a good clinical result without osteoarthritis progression at 10 years. Clin Orthop Relat Res 2015; 473 (04) 1333-1341
  • 58 Lerch TD, Steppacher SD, Liechti EF, Tannast M, Siebenrock KA. One-third of hips after periacetabular osteotomy survive 30 years with good clinical results, no progression of arthritis, or conversion to THA. Clin Orthop Relat Res 2017; 475 (04) 1154-1168
  • 59 Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 2003; (417) 112-120
  • 60 Tannast M, Goricki D, Beck M, Murphy SB, Siebenrock KA. Hip damage occurs at the zone of femoroacetabular impingement. Clin Orthop Relat Res 2008; 466 (02) 273-280
  • 61 Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 2005; 87 (07) 1012-1018
  • 62 Pfirrmann CWA, Mengiardi B, Dora C, Kalberer F, Zanetti M, Hodler J. Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology 2006; 240 (03) 778-785
  • 63 Zurmühle CA, Anwander H, Albers CE. , et al. Periacetabular osteotomy provides higher survivorship than rim trimming for acetabular retroversion. Clin Orthop Relat Res 2017; 475 (04) 1138-1150
  • 64 Siebenrock KA, Schaller C, Tannast M, Keel M, Büchler L. Anteverting periacetabular osteotomy for symptomatic acetabular retroversion: results at ten years. J Bone Joint Surg Am 2014; 96 (21) 1785-1792
  • 65 Kraeutler MJ, Chadayammuri V, Garabekyan T, Mei-Dan O. Femoral version abnormalities significantly outweigh effect of cam impingement on hip internal rotation. J Bone Joint Surg Am 2018; 100 (03) 205-210
  • 66 Chadayammuri V, Garabekyan T, Bedi A. , et al. Passive hip range of motion predicts femoral torsion and acetabular version. J Bone Joint Surg Am 2016; 98 (02) 127-134
  • 67 Lerch TD, Todorski IAS, Steppacher SD. , et al. Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: a controlled study of 538 hips. Am J Sports Med 2018; 46 (01) 122-134
  • 68 Fabricant PD, Fields KG, Taylor SA, Magennis E, Bedi A, Kelly BT. The effect of femoral and acetabular version on clinical outcomes after arthroscopic femoroacetabular impingement surgery. J Bone Joint Surg Am 2015; 97 (07) 537-543
  • 69 Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CWA. Femoral antetorsion: comparing asymptomatic volunteers and patients with femoroacetabular impingement. Radiology 2012; 263 (02) 475-483
  • 70 Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CWA. How useful is the alpha angle for discriminating between symptomatic patients with cam-type femoroacetabular impingement and asymptomatic volunteers?. Radiology 2012; 264 (02) 514-521
  • 71 Büchler L, Neumann M, Schwab JM, Iselin L, Tannast M, Beck M. Arthroscopic versus open cam resection in the treatment of femoroacetabular impingement. Arthroscopy 2013; 29 (04) 653-660
  • 72 Hanke MS, Steppacher SD, Zurmühle CA, Siebenrock KA, Tannast M. Hips with protrusio acetabuli are at increased risk for failure after femoroacetabular impingement surgery: a 10-year followup. Clin Orthop Relat Res 2016; 474 (10) 2168-2180
  • 73 Tannast M, Hanke MS, Zheng G, Steppacher SD, Siebenrock KA. What are the radiographic reference values for acetabular under- and overcoverage?. Clin Orthop Relat Res 2015; 473 (04) 1234-1246
  • 74 Wells J, Millis M, Kim Y-J, Bulat E, Miller P, Matheney T. Survivorship of the bernese periacetabular osteotomy: what factors are associated with long-term failure?. Clin Orthop Relat Res 2017; 475 (02) 396-405
  • 75 Stelzeneder D, Mamisch TC, Kress I. , et al. Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthritis Cartilage 2012; 20 (07) 661-669
  • 76 Albers CE, Steppacher SD, Ganz R, Tannast M, Siebenrock KA. Impingement adversely affects 10-year survivorship after periacetabular osteotomy for DDH. Clin Orthop Relat Res 2013; 471 (05) 1602-1614
  • 77 McClincy MP, Wylie JD, Kim Y-J, Millis MB, Novais EN. Periacetabular osteotomy improves pain and function in patients with lateral center-edge angle between 18° and 25°, but are these hips really borderline dysplastic?. Clin Orthop Relat Res 2018; September 27 (Epub ahead of print)
  • 78 Haefeli PC, Steppacher SD, Babst D, Siebenrock KA, Tannast M. An increased iliocapsularis-to-rectus-femoris ratio is suggestive for instability in borderline hips. Clin Orthop Relat Res 2015; 473 (12) 3725-3734
  • 79 Larson CM, Ross JR, Stone RM. , et al. Arthroscopic management of dysplastic hip deformities: predictors of success and failures with comparison to an arthroscopic FAI cohort. Am J Sports Med 2016; 44 (02) 447-453
  • 80 Suter A, Dietrich TJ, Maier M, Dora C, Pfirrmann CWA. MR findings associated with positive distraction of the hip joint achieved by axial traction. Skeletal Radiol 2015; 44 (06) 787-795
  • 81 Cerezal L, Arnaiz J, Canga A. , et al. Emerging topics on the hip: ligamentum teres and hip microinstability. Eur J Radiol 2012; 81 (12) 3745-3754
  • 82 Magerkurth O, Jacobson JA, Morag Y, Caoili E, Fessell D, Sekiya JK. Capsular laxity of the hip: findings at magnetic resonance arthrography. Arthroscopy 2013; 29 (10) 1615-1622
  • 83 Hernando MF, Cerezal L, Pérez-Carro L, Canga A, González RP. Evaluation and management of ischiofemoral impingement: a pathophysiologic, radiologic, and therapeutic approach to a complex diagnosis. Skeletal Radiol 2016; 45 (06) 771-787
  • 84 Tosun O, Algin O, Yalcin N, Cay N, Ocakoglu G, Karaoglanoglu M. Ischiofemoral impingement: evaluation with new MRI parameters and assessment of their reliability. Skeletal Radiol 2012; 41 (05) 575-587
  • 85 Chang CY, Gill CM, Huang AJ. , et al. Use of MR arthrography in detecting tears of the ligamentum teres with arthroscopic correlation. Skeletal Radiol 2015; 44 (03) 361-367
  • 86 Gollwitzer H, Banke IJ, Schauwecker J, Gerdesmeyer L, Suren C. How to address ischiofemoral impingement? Treatment algorithm and review of the literature. J Hip Preserv Surg 2017; 4 (04) 289-298
  • 87 Siebenrock KA, Steppacher SD, Haefeli PC, Schwab JM, Tannast M. Valgus hip with high antetorsion causes pain through posterior extraarticular FAI. Clin Orthop Relat Res 2013; 471 (12) 3774-3780
  • 88 Tannast M, Hanke M, Ecker TM, Murphy SB, Albers CE, Puls M. LCPD: reduced range of motion resulting from extra- and intraarticular impingement. Clin Orthop Relat Res 2012; 470 (09) 2431-2440
  • 89 Todorski I, Lerch TD, Schmaranzer F, Siebenrock K, Steppacher S, Tannast M. Is acetabular labrum size and tear pattern associated with femoral retrotorsion or increased femoral torsion in patients with FAI? ECR 2017 Book of Abstracts. Insights Imaging 2017; 8 (S1): 435
  • 90 Johnson AC, Hollman JH, Howe BM, Finnoff JT. Variability of ischiofemoral space dimensions with changes in hip flexion: an MRI study. Skeletal Radiol 2017; 46 (01) 59-64
  • 91 Buly RL, Sosa BR, Poultsides LA, Caldwell E, Rozbruch SR. Femoral derotation osteotomy in adults for version abnormalities. J Am Acad Orthop Surg 2018; 26 (19) e416-e425
  • 92 Hatem MA, Palmer IJ, Martin HD. Diagnosis and 2-year outcomes of endoscopic treatment for ischiofemoral impingement. Arthroscopy 2015; 31 (02) 239-246
  • 93 Sconfienza LM, Albano D, Messina C, Silvestri E, Tagliafico AS. How, when, why in magnetic resonance arthrography: an international survey by the European Society of Musculoskeletal Radiology (ESSR). Eur Radiol 2018; 28 (06) 2356-2368
  • 94 Messina C, Banfi G, Aliprandi A. , et al. Ultrasound guidance to perform intra-articular injection of gadolinium-based contrast material for magnetic resonance arthrography as an alternative to fluoroscopy: the time is now. Eur Radiol 2016; 26 (05) 1221-1225
  • 95 Chang CY, Simeone FJ, DeLorenzo MC, Palmer WE, Bredella MA, Huang AJ. Dose reduction for fluoroscopically guided injections: phantom simulation and patient procedures. Skeletal Radiol 2018; 47 (02) 223-231
  • 96 Schmaranzer F, Klauser A, Kogler M. , et al. Improving visualization of the central compartment of the hip with direct MR arthrography under axial leg traction: a feasibility study. Acad Radiol 2014; 21 (10) 1240-1247
  • 97 Saupe N, Zanetti M, Pfirrmann CWA, Wels T, Schwenke C, Hodler J. Pain and other side effects after MR arthrography: prospective evaluation in 1085 patients. Radiology 2009; 250 (03) 830-838
  • 98 Ladd LM, Keene JS, Del Rio AM, Rosas HG. Correlation between hip arthroscopy outcomes and preoperative anesthetic hip joint injections, MR arthrogram imaging findings, and patient demographic characteristics. AJR Am J Roentgenol 2016; 207 (05) 1062-1069
  • 99 Khan M, Ayeni OR, Madden K. , et al. Femoroacetabular impingement: have we hit a global tipping point in diagnosis and treatment? Results from the InterNational Femoroacetabular Impingement Optimal Care Update Survey (IN FOCUS). Arthroscopy 2016; 32 (05) 779-787.e4
  • 100 Duc SR, Hodler J, Schmid MR. , et al. Prospective evaluation of two different injection techniques for MR arthrography of the hip. Eur Radiol 2006; 16 (02) 473-478
  • 101 Dietrich TJ, Grob K, Kim CO. Postoperative imaging after impingement surgery. Semin Musculoskelet Radiol 2017; 21 (05) 529-538
  • 102 Hodler J. Technical errors in MR arthrography. Skeletal Radiol 2008; 37 (01) 9-18
  • 103 McDonald RJ, McDonald JS, Kallmes DF. , et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015; 275 (03) 772-782
  • 104 Kralik SF, Singhal KK, Frank MS, Ladd LM. Evaluation of gadolinium deposition in the brain after MR arthrography. AJR Am J Roentgenol 2018; 211 (05) 1063-1067
  • 105 Smith TO, Hilton G, Toms AP, Donell ST, Hing CB. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol 2011; 21 (04) 863-874
  • 106 Saied AM, Redant C, El-Batouty M. , et al. Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement: systematic review and meta-analysis. BMC Musculoskelet Disord 2017; 18 (01) 83
  • 107 Shakoor D, Farahani SJ, Hafezi-Nejad N. , et al. Lesions of ligamentum teres: diagnostic performance of MRI and MR arthrography-a systematic review and meta-analysis. AJR Am J Roentgenol 2018; 211 (01) W52-W63
  • 108 Crespo-Rodríguez AM, De Lucas-Villarrubia JC, Pastrana-Ledesma M, Hualde-Juvera A, Méndez-Alonso S, Padron M. The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement. Eur J Radiol 2017; 88: 109-116
  • 109 Chopra A, Grainger AJ, Dube B. , et al. Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip. Eur Radiol 2018; 28 (03) 963-971
  • 110 Sutter R, Zubler V, Hoffmann A. , et al. Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage?. AJR Am J Roentgenol 2014; 202 (01) 160-169
  • 111 Magee T. Comparison of 3.0-T MR vs 3.0-T MR arthrography of the hip for detection of acetabular labral tears and chondral defects in the same patient population. Br J Radiol 2015; 88 (1053): 20140817
  • 112 Tian C-Y, Wang J-Q, Zheng Z-Z, Ren A-H. 3.0 T conventional hip MR and hip MR arthrography for the acetabular labral tears confirmed by arthroscopy. Eur J Radiol 2014; 83 (10) 1822-1827
  • 113 Tönnis D. General radiography of the hip joint. In: Tönnis D. , ed. Congenital Dysplasia, Dislocation of the Hip. New York, NY: Springer; 1987
  • 114 Chandrasekaran S, Darwish N, Gui C, Lodhia P, Suarez-Ahedo C, Domb BG. Outcomes of hip arthroscopy in patients with Tönnis grade-2 osteoarthritis at a mean 2-year follow-up: evaluation using a matched-pair analysis with Tönnis grade-0 and grade-1 cohorts. J Bone Joint Surg Am 2016; 98 (12) 973-982
  • 115 Domb BG, Chaharbakhshi EO, Rybalko D, Close MR, Litrenta J, Perets I. Outcomes of hip arthroscopic surgery in patients with Tönnis grade 1 osteoarthritis at a minimum 5-year follow-up: a matched-pair comparison with a Tönnis grade 0 control group. Am J Sports Med 2017; 45 (10) 2294-2302
  • 116 Perets I, Chaharbakhshi EO, Mu B. , et al. Hip arthroscopy in patients ages 50 years or older: minimum 5-year outcomes, survivorship, and risk factors for conversion to total hip replacement. Arthroscopy 2018; 34 (11) 3001-3009
  • 117 Blankenbaker DG, De Smet AA, Keene JS. MR arthrographic appearance of the postoperative acetabular labrum in patients with suspected recurrent labral tears. AJR Am J Roentgenol 2011; 197 (06) W1118-W1122
  • 118 Kim CO, Dietrich TJ, Zingg PO, Dora C, Pfirrmann CWA, Sutter R. Arthroscopic hip surgery: frequency of postoperative MR arthrographic findings in asymptomatic and symptomatic patients. Radiology 2017; 283 (03) 779-788
  • 119 Haefeli PC, Schmaranzer F, Steppacher SD, Cullmann JL, Tannast M, Büchler L. Imaging appearance and distribution of intra-articular adhesions following open FAI surgery. Eur J Radiol 2018; 104: 71-78
  • 120 Toomayan GA, Holman WR, Major NM, Kozlowicz SM, Vail TP. Sensitivity of MR arthrography in the evaluation of acetabular labral tears. AJR Am J Roentgenol 2006; 186 (02) 449-453
  • 121 Kraus MS, Notohamiprodjo M, Partovi S. , et al. MR arthrography of the hip: diagnostic performance and image quality of 3D-steady state free precession versus 2D turbo spin echo sequences. Skeletal Radiol 2018; 47 (06) 811-819
  • 122 Blankenbaker DG, Ullrick SR, Kijowski R. , et al. MR arthrography of the hip: comparison of IDEAL-SPGR volume sequence to standard MR sequences in the detection and grading of cartilage lesions. Radiology 2011; 261 (03) 863-871
  • 123 Dudda M, Albers C, Mamisch TC, Werlen S, Beck M. Do normal radiographs exclude asphericity of the femoral head-neck junction?. Clin Orthop Relat Res 2009; 467 (03) 651-659
  • 124 Domayer SE, Ziebarth K, Chan J, Bixby S, Mamisch TC, Kim YJ. Femoroacetabular cam-type impingement: diagnostic sensitivity and specificity of radiographic views compared to radial MRI. Eur J Radiol 2011; 80 (03) 805-810
  • 125 Klenke FM, Hoffmann DB, Cross BJ, Siebenrock KA. Validation of a standardized mapping system of the hip joint for radial MRA sequencing. Skeletal Radiol 2015; 44 (03) 339-343
  • 126 Yoon LS, Palmer WE, Kassarjian A. Evaluation of radial-sequence imaging in detecting acetabular labral tears at hip MR arthrography. Skeletal Radiol 2007; 36 (11) 1029-1033
  • 127 Murphy SB, Simon SR, Kijewski PK, Wilkinson RH, Griscom NT. Femoral anteversion. J Bone Joint Surg Am 1987; 69 (08) 1169-1176
  • 128 Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CWA. Assessment of femoral antetorsion with MRI: comparison of oblique measurements to standard transverse measurements. AJR Am J Roentgenol 2015; 205 (01) 130-135
  • 129 Pfirrmann CWA, Duc SR, Zanetti M, Dora C, Hodler J. MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology 2008; 249 (01) 236-241
  • 130 Dienst M, Seil R, Gödde S. , et al. Effects of traction, distension, and joint position on distraction of the hip joint: an experimental study in cadavers. Arthroscopy 2002; 18 (08) 865-871
  • 131 Llopis E, Cerezal L, Kassarjian A, Higueras V, Fernandez E. Direct MR arthrography of the hip with leg traction: feasibility for assessing articular cartilage. AJR Am J Roentgenol 2008; 190 (04) 1124-1128
  • 132 Schmaranzer F, Klauser A, Kogler M. , et al. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol 2015; 25 (06) 1721-1730
  • 133 Schmaranzer F, Klauser A, Kogler M. , et al. MR arthrography of the hip with and without leg traction: assessing the diagnostic performance in detection of ligamentum teres lesions with arthroscopic correlation. Eur J Radiol 2016; 85 (02) 489-497
  • 134 Schmaranzer F, Lerch TD, Strasser U, Vavron P, Schmaranzer E, Tannast M. Usefulness of MR arthrography of the hip with and without leg traction in detection of intra-articular bodies. Acad Radiol 2018; November 19 (Epub ahead of print)
  • 135 Cerezal L, Carro LP, Llorca J. , et al. Usefulness of MR arthrography of the hip with leg traction in the evaluation of ligamentum teres injuries. Skeletal Radiol 2015; 44 (11) 1585-1595
  • 136 Schmaranzer F, Siegfried M, Lerch T, Siebenrock K, Tannast M. Traction MR arthrography of the hip for characterization of avascular necrosis and femoral cartilage damage [EHS Congress 2018 abstract book]. HIP Int 2018; 28 (1 Suppl): 3-187
  • 137 Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res 2007; 25 (01) 122-131
  • 138 Schmaranzer F, Degonda C, Lerch T. , et al. ECR 2018 Book of Abstracts. 3D MRI-based simulation of hip impingement is as accurate as 3D CT-based impingement simulation. Insights Imaging 2018; 9 (S1): 421
  • 139 Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim Y-J. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am 2006; 88 (07) 1540-1548
  • 140 Kim SD, Jessel R, Zurakowski D, Millis MB, Kim Y-J. Anterior delayed gadolinium-enhanced MRI of cartilage values predict joint failure after periacetabular osteotomy. Clin Orthop Relat Res 2012; 470 (12) 3332-3341
  • 141 Bittersohl B, Hosalkar HS, Apprich S, Werlen SA, Siebenrock KA, Mamisch TC. Comparison of pre-operative dGEMRIC imaging with intra-operative findings in femoroacetabular impingement: preliminary findings. Skeletal Radiol 2011; 40 (05) 553-561
  • 142 Schmaranzer F, Haefeli PC, Hanke MS. , et al. How does the dGEMRIC index change after surgical treatment for FAI? A prospective controlled study: preliminary results. Clin Orthop Relat Res 2017; 475 (04) 1080-1099
  • 143 Schmaranzer F, Arendt L, Liechti EF. , et al. Do dGEMRIC and T2 imaging correlate with histologic cartilage degeneration in an experimental ovine FAI model?. Clin Orthop Relat Res 2018; November 29 (Epub ahead of print)
  • 144 Zilkens C, Miese F, Herten M. , et al. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study. Eur J Radiol 2013; 82 (02) e81-e86
  • 145 Zeng G, Yang X, Li J, Yu L, Heng P-A, Zheng G. 3D U-net with multi-level deep supervision: fully automatic segmentation of proximal femur in 3D MR images. In: Wang Q, Shi Y, Suk H-I, Suzuki K. , eds. Machine Learning in Medical Imaging. Vol. 10541. Cham, Switzerland: Springer International; 2017: 274-282