Semin Neurol 2019; 39(02): 179-187
DOI: 10.1055/s-0039-1678585
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

A Multifactor Approach to Mild Cognitive Impairment

Taha Qarni
1   Department of Neurology, Yale School of Medicine, Yale University, New Haven, Connecticut
,
Arash Salardini
1   Department of Neurology, Yale School of Medicine, Yale University, New Haven, Connecticut
› Author Affiliations
Further Information

Publication History

Publication Date:
29 March 2019 (online)

Abstract

Mild cognitive impairment (MCI) represents an intermediate stage between normal cognition and dementia. Individuals with MCI are at increased risk of conversion to dementia, and the rate of progression of MCI to dementia is dependent on age, gender, and education. MCI may be diagnosed using neuropsychological criteria using cut-offs representing decrements in cognition, or using criteria to assess for a decline in functional status. The ability to determine the status of dementia-related biomarkers has allowed for better staging and prognostication in different forms of MCI. MCI is now recognized as a significant target stage for future therapies. These future therapies aim to reduce the rate of conversion of individuals with MCI to dementia. In this article, we review different conceptions of MCI, the diagnosis and prognostication of MCI, and presently available management approaches for this condition.

 
  • References

  • 1 Lopez OL. Mild cognitive impairment. Continuum (Minneap Minn) 2013; 19 (2 Dementia): 411-424
  • 2 Prestia A, Caroli A, van der Flier WM. , et al. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology 2013; 80 (11) 1048-1056
  • 3 Petersen RC, Lopez O, Armstrong MJ. , et al. Practice guideline update summary: mild cognitive impairment: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018; 90 (03) 126-135
  • 4 Suzuki T, Shimada H, Makizako H. , et al. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS One 2013; 8 (04) e61483
  • 5 Cheng YW, Chen TF, Chiu MJ. From mild cognitive impairment to subjective cognitive decline: conceptual and methodological evolution. Neuropsychiatr Dis Treat 2017; 13: 491-498
  • 6 Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014; 312 (23) 2551-2561
  • 7 Heinik J. V. A. Kral, the Montreal Hebrew Old People's Home, and benign senescent forgetfulness. Hist Psychiatry 2006; 17 (67 Pt 3): 313-332
  • 8 Golomb J, Kluger A, Ferris SH. Mild cognitive impairment: historical development and summary of research. Dialogues Clin Neurosci 2004; 6 (04) 351-367
  • 9 Resiberg B, Ferris SH, de Leon MJ. , et al. Stage-specific behavioral, cognitive, and in vivo changes in community residing subjects with age-associated memory impairment (AAMI) and primary degenerative dementia of the Alzheimer type. Drug Dev Res 1988; 15: 101-114
  • 10 Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993; 43 (11) 2412-2414
  • 11 Petersen RC, Smith GE, Ivnik RJ. , et al. Apolipoprotein E status as a predictor of the development of Alzheimer's disease in memory-impaired individuals. JAMA 1995; 273 (16) 1274-1278
  • 12 Nasreddine ZS, Phillips NA, Bédirian V. , et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53 (04) 695-699
  • 13 Ciesielska N, Sokołowski R, Mazur E, Podhorecka M, Polak-Szabela A, Kędziora-Kornatowska K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr Pol 2016; 50 (05) 1039-1052
  • 14 Chu LW, Ng KH, Law AC, Lee AM, Kwan F. Validity of the Cantonese Chinese Montreal Cognitive Assessment in Southern Chinese. Geriatr Gerontol Int 2015; 15 (01) 96-103
  • 15 Gagnon G, Hansen KT, Woolmore-Goodwin S. , et al. Correcting the MoCA for education: effect on sensitivity. Can J Neurol Sci 2013; 40 (05) 678-683
  • 16 Espino DV, Lichtenstein MJ, Palmer RF, Hazuda HP. Ethnic differences in mini-mental state examination (MMSE) scores: where you live makes a difference. J Am Geriatr Soc 2001; 49 (05) 538-548
  • 17 Matallana D, de Santacruz C, Cano C. , et al. The relationship between education level and mini-mental state examination domains among older Mexican Americans. J Geriatr Psychiatry Neurol 2011; 24 (01) 9-18
  • 18 Jak AJ, Bondi MW, Delano-Wood L. , et al. Quantification of five neuropsychological approaches to defining mild cognitive impairment. Am J Geriatr Psychiatry 2009; 17 (05) 368-375
  • 19 Petersen RC. Mild cognitive impairment. Continuum (Minneap Minn) 2016; 22 (2 Dementia): 404-418
  • 20 Ganguli M, Fu B, Snitz BE, Hughes TF, Chang CC. Mild cognitive impairment: incidence and vascular risk factors in a population-based cohort. Neurology 2013; 80 (23) 2112-2120
  • 21 Sachdev PS, Lipnicki DM, Crawford J. , et al; Sydney Memory, Ageing Study Team. Factors predicting reversion from mild cognitive impairment to normal cognitive functioning: a population-based study. PLoS One 2013; 8 (03) e59649
  • 22 Koepsell TD, Monsell SE. Reversion from mild cognitive impairment to normal or near-normal cognition: risk factors and prognosis. Neurology 2012; 79 (15) 1591-1598
  • 23 Clem MA, Holliday RP, Pandya S, Hynan LS, Lacritz LH, Woon FL. Predictors that a diagnosis of mild cognitive impairment will remain stable 3 years later. Cogn Behav Neurol 2017; 30 (01) 8-15
  • 24 Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56 (03) 303-308
  • 25 Li JQ, Tan L, Wang HF. , et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry 2016; 87 (05) 476-484
  • 26 Yarnall AJ, Rochester L, Burn DJ. Mild cognitive impairment in Parkinson's disease. Age Ageing 2013; 42 (05) 567-576
  • 27 Farias ST, Mungas D, Reed BR, Harvey D, DeCarli C. Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch Neurol 2009; 66 (09) 1151-1157
  • 28 Jack CJr, Knopman DS, Jagust WJ. , et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12 (02) 207-216
  • 29 Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med 2011; 364 (23) 2227-2234
  • 30 Jack Jr CR, Bennett DA, Blennow K. , et al; Contributors. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018; 14 (04) 535-562
  • 31 Monastero R, Cicero CE, Baschi R. , et al. Mild cognitive impairment in Parkinson's disease: the Parkinson's disease cognitive study (PACOS). J Neurol 2018; 265 (05) 1050-1058
  • 32 Meireles J, Massano J. Cognitive impairment and dementia in Parkinson's disease: clinical features, diagnosis, and management. Front Neurol 2012; 3: 88
  • 33 Buter TC, van den Hout A, Matthews FE, Larsen JP, Brayne C, Aarsland D. Dementia and survival in Parkinson disease: a 12-year population study. Neurology 2008; 70 (13) 1017-1022
  • 34 Williams-Gray CH, Mason SL, Evans JR. , et al. The CamPaIGN study of Parkinson's disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatry 2013; 84 (11) 1258-1264
  • 35 Levy G, Tang MX, Louis ED. , et al. The association of incident dementia with mortality in PD. Neurology 2002; 59 (11) 1708-1713
  • 36 Lo RY, Tanner CM, Albers KB. , et al. Clinical features in early Parkinson disease and survival. Arch Neurol 2009; 66 (11) 1353-1358
  • 37 Litvan I, Goldman JG, Tröster AI. , et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord 2012; 27 (03) 349-356
  • 38 Smith E. Vascular cognitive impairment. Continuum (Minneap Minn) 2016; 22 (2 Dementia): 490-509
  • 39 Mijajlović MD, Pavlović A, Brainin M. , et al. Post-stroke dementia - a comprehensive review. BMC Med 2017; 15 (01) 11
  • 40 Wardlaw JM, Smith EE, Biessels GJ. , et al; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12 (08) 822-838
  • 41 Sachdev P, Kalaria R, O'Brien J. , et al; Internationlal Society for Vascular Behavioral and Cognitive Disorders. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord 2014; 28 (03) 206-218
  • 42 Fink HA, Jutkowitz E, McCarten JR. , et al. Pharmacologic interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: a systematic review. Ann Intern Med 2018; 168 (01) 39-51
  • 43 Kernan WN, Ovbiagele B, Black HR. , et al; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014; 45 (07) 2160-2236
  • 44 Brasure M, Desai P, Davila H. , et al. Physical activity interventions in preventing cognitive decline and Alzheimer-type dementia: a systematic review. Ann Intern Med 2018; 168 (01) 30-38
  • 45 Butler M, Nelson VA, Davila H. , et al. Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: a systematic review. Ann Intern Med 2018; 168 (01) 52-62
  • 46 Butler M, McCreedy E, Nelson VA. , et al. Does cognitive training prevent cognitive decline?: a systematic review. Ann Intern Med 2018; 168 (01) 63-68
  • 47 Bartels C, Wagner M, Wolfsgruber S, Ehrenreich H, Schneider A. ; Alzheimer's Disease Neuroimaging Initiative. Impact of SSRI therapy on risk of conversion from mild cognitive impairment to Alzheimer's dementia in individuals with previous depression. Am J Psychiatry 2018; 175 (03) 232-241
  • 48 Cooper C, Li R, Lyketsos C, Livingston G. Treatment for mild cognitive impairment: systematic review. Br J Psychiatry 2013; 203 (03) 255-264
  • 49 Scheltens P, Leys D, Barkhof F. , et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55 (10) 967-972
  • 50 Aisen PS, Petersen RC, Donohue MC. , et al; Alzheimer's Disease Neuroimaging Initiative. Clinical core of the Alzheimer's disease neuroimaging initiative: progress and plans. Alzheimers Dement 2010; 6 (03) 239-246
  • 51 Jessen F, Wolfsgruber S, Wiese B. , et al; German Study on Aging, Cognition and Dementia in Primary Care Patients. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimers Dement 2014; 10 (01) 76-83
  • 52 Verghese J, Wang C, Lipton RB, Holtzer R. Motoric cognitive risk syndrome and the risk of dementia. J Gerontol A Biol Sci Med Sci 2013; 68 (04) 412-418
  • 53 Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer's dementia. N Engl J Med 2002; 347 (22) 1761-1768
  • 54 Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 2007; 78 (09) 929-935
  • 55 Verghese J, Robbins M, Holtzer R. , et al. Gait dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc 2008; 56 (07) 1244-1251
  • 56 Ismail Z, Agüera-Ortiz L, Brodaty H. , et al; NPS Professional Interest Area of the International Society of to Advance Alzheimer's Research and Treatment (NPS-PIA of ISTAART). The Mild Behavioral Impairment Checklist (MBI-C): a rating scale for neuropsychiatric symptoms in pre-dementia populations. J Alzheimers Dis 2017; 56 (03) 929-938
  • 57 Velickaite V, Ferreira D, Cavallin L. , et al. Medial temporal lobe atrophy ratings in a large 75-year-old population-based cohort: gender-corrected and education-corrected normative data. Eur Radiol. 2018; Apr; 28 (04) 1739-1747