Hamostaseologie 2018; 38(04): 223-228
DOI: 10.1055/s-0038-1668164
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Involvement of Toll-like Receptor-2 in Arterial Thrombus Formation

Christoph Reinhardt
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Mainz, Germany
2   German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
› Author Affiliations
Further Information

Publication History

03 April 2018

24 May 2018

Publication Date:
27 September 2018 (online)

Abstract

There is emerging evidence for the participation of toll-like receptor-2 (TLR2) expressed on platelets and endothelial cells in the setting of arterial thrombosis. In isolated human platelets, TLR2/1 activation was demonstrated to induce platelet activation, secretion, aggregation, adhesion to collagen coatings and the formation of platelet–leukocyte conjugates, whereas murine platelets were less sensitive to TLR2/1 stimulation. Also, endothelial cells can be activated by stimulation with TLR2 agonists, resulting in increased expression of adhesion molecules, synthesis of inflammatory mediators and Weibel–Palade body exocytosis. Endothelial TLR2 signalling promotes atherosclerotic lesion development in mouse atherosclerosis models. Experiments with germ-free mouse models demonstrated that the presence of commensal microbiota increased endothelial von Willebrand factor synthesis in the liver through TLR2. In the carotid artery ligation model, the elevated von Willebrand factor plasma levels enhanced platelet deposition to the injury site. Furthermore, in the hyperlipidemic ApoE-deficient mouse model, TLR2 deficiency was shown to protect from ferric chloride–induced carotid artery thrombosis. This review article provides an overview on TLR2 signalling in platelets and the vascular endothelium and summarizes how TLR2 signalling contributes to arterial thrombosis.

Zusammenfassung

Es gibt neue Hinweise für die Beteiligung von Toll-like-Rezeptor-2 (TLR2) auf Thrombozyten und Endothelzellen, in der arteriellen Thrombose. In isolierten menschlichen Blutplättchen wurde gezeigt, dass die TLR2/1-Aktivierung die Plättchenaktivierung, Sekretion, Aggregation, Adhäsion an Kollagenbeschichtungen und die Bildung von Thrombozyten-Leukozyten-Konjugaten induziert, während Mausplättchen weniger empfindlich auf TLR2/1-Stimulation reagieren. Endothelzellen können ebenfalls durch Stimulation mit TLR2-Agonisten aktiviert werden, was zu einer erhöhten Expression von Adhäsionsmolekülen, Synthese von Entzündungsmediatoren und Weibel-Palade-Körper-Exozytose führt. Endotheliale TLR2-Signalgebung fördert die Entwicklung atherosklerotischer Läsionen in Maus-Atherosklerosemodell. Experimente mit keimfreien Mausmodellen zeigen, dass das Vorhandensein von kommensalen Mikrobiota die endotheliale von Willebrand-Faktor-Synthese in der Leber durch TLR2 erhöhen kann. Im Ligationsmodell der Karotisarterie förderte der erhöhte von-Willebrand-Faktor-Plasmaspiegel die Thrombozytenablagerung an die Verletzungsstelle. Darüber hinaus wurde gezeigt, dass der TLR2-Mangel im Hyperlipidämie-ApoE-defizienten Mausmodell vor Eisenchlorid-induzierter Karotisarterienthrombose schützt. Dieser Übersichtsartikel beschreibt die TLR2-Signaltransduktion in Thrombozyten und im vaskulären Endothel und fasst zusammen, wie der TLR2-Signalweg zur arteriellen Thrombose beiträgt.

 
  • References

  • 1 Tobias P, Curtiss LK. Thematic review series: The immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. J Lipid Res 2005; 46 (03) 404-411
  • 2 Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants?. J Leukoc Biol 2010; 87 (06) 989-999
  • 3 Rumbaut RE, Bellera RV, Randhawa JK. , et al. Endotoxin enhances microvascular thrombosis in mouse cremaster venules via a TLR4-dependent, neutrophil-independent mechanism. Am J Physiol Heart Circ Physiol 2006; 290 (04) H1671-H1679
  • 4 Stark K, Philippi V, Stockhausen S. , et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016; 128 (20) 2435-2449
  • 5 Kaiser R, Tang LF, Taylor KE. , et al. A polymorphism in TLR2 is associated with arterial thrombosis in a multiethnic population of patients with systemic lupus erythematosus. Arthritis Rheumatol 2014; 66 (07) 1882-1887
  • 6 Zhang S, Zhang S, Hu L. , et al. Nucleotide-binding oligomerization domain 2 receptor is expressed in platelets and enhances platelet activation and thrombosis. Circulation 2015; 131 (13) 1160-1170
  • 7 Prakash P, Kulkarni PP, Lentz SR, Chauhan AK. Cellular fibronectin containing extra domain A promotes arterial thrombosis in mice through platelet Toll-like receptor 4. Blood 2015; 125 (20) 3164-3172
  • 8 Jäckel S, Kiouptsi K, Lillich M. , et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017; 130 (04) 542-553
  • 9 Biswas S, Zimman A, Gao D, Byzova TV, Podrez EA. TLR2 plays a key role in platelet hyperreactivity and accelerated thrombosis associated with hyperlipidemia. Circ Res 2017; 121 (08) 951-962
  • 10 Vogel S, Bodenstein R, Chen Q. , et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125 (12) 4638-4654
  • 11 von Brühl ML, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 12 Brill A, Fuchs TA, Chauhan AK. , et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117 (04) 1400-1407
  • 13 Brill A, Fuchs TA, Savchenko AS. , et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 14 Martinod K, Demers M, Fuchs TA. , et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 2013; 110 (21) 8674-8679
  • 15 Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: Past, present and future. Thromb Haemost 2017; 117 (07) 1249-1257
  • 16 Clemetson KJ. A short history of platelet glycoprotein Ib complex. Thromb Haemost 2007; 98 (01) 63-68
  • 17 Ruggeri ZM, Mendolicchio GL. Interaction of von Willebrand factor with platelets and the vessel wall. Hamostaseologie 2015; 35 (03) 211-224
  • 18 De Marco L, Girolami A, Zimmerman TS, Ruggeri ZM. von Willebrand factor interaction with the glycoprotein IIb/IIa complex. Its role in platelet function as demonstrated in patients with congenital afibrinogenemia. J Clin Invest 1986; 77 (04) 1272-1277
  • 19 Goto S, Ikeda Y, Saldívar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998; 101 (02) 479-486
  • 20 Massberg S, Gawaz M, Grüner S. , et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197 (01) 41-49
  • 21 Kato K, Kanaji T, Russell S. , et al. The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood 2003; 102 (05) 1701-1707
  • 22 Kuijpers MJ, Pozgajova M, Cosemans JM. , et al. Role of murine integrin alpha2beta1 in thrombus stabilization and embolization: contribution of thromboxane A2. Thromb Haemost 2007; 98 (05) 1072-1080
  • 23 Shiraki R, Inoue N, Kawasaki S. , et al. Expression of Toll-like receptors on human platelets. Thromb Res 2004; 113 (06) 379-385
  • 24 Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood 2005; 106 (07) 2417-2423
  • 25 Aslam R, Speck ER, Kim M. , et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 2006; 107 (02) 637-641
  • 26 Rex S, Beaulieu LM, Perlman DH. , et al. Immune versus thrombotic stimulation of platelets differentially regulates signalling pathways, intracellular protein-protein interactions, and alpha-granule release. Thromb Haemost 2009; 102 (01) 97-110
  • 27 Panigrahi S, Ma Y, Hong L. , et al. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res 2013; 112 (01) 103-112
  • 28 Dunzendorfer S, Lee HK, Tobias PS. Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity. Circ Res 2004; 95 (07) 684-691
  • 29 Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest 2006; 86 (01) 9-22
  • 30 Li J, Ma Z, Tang ZL, Stevens T, Pitt B, Li S. CpG DNA-mediated immune response in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287 (03) L552-L558
  • 31 Opitz B, Püschel A, Beermann W. , et al. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 2006; 176 (01) 484-490
  • 32 Legrand C, Pidard D, Beiso P, Tenza D, Edelman L. Interaction of a monoclonal antibody to glycoprotein IV (CD36) with human platelets and its effect on platelet function. Platelets 1991; 2 (02) 99-105
  • 33 Hoebe K, Georgel P, Rutschmann S. , et al. CD36 is a sensor of diacylglycerides. Nature 2005; 433 (7025): 523-527
  • 34 Shashkin PN, Brown GT, Ghosh A, Marathe GK, McIntyre TM. Lipopolysaccharide is a direct agonist for platelet RNA splicing. J Immunol 2008; 181 (05) 3495-3502
  • 35 Liu F, Morris S, Epps J, Carroll R. Demonstration of an activation regulated NF-kappaB/I-kappaBalpha complex in human platelets. Thromb Res 2002; 106 (4–5): 199-203
  • 36 Cognasse F, Hamzeh-Cognasse H, Lafarge S. , et al. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 2008; 141 (01) 84-91
  • 37 Denis MM, Tolley ND, Bunting M. , et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005; 122 (03) 379-391
  • 38 Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11 (05) 373-384
  • 39 Vallance TM, Zeuner MT, Williams HF, Widera D, Vaiyapuri S. Toll-like receptor-4 signalling and its impact on platelet function, thrombosis, and haemostasis. Mediators Inflamm 2017; 2017: 9605894
  • 40 Blair P, Rex S, Vitseva O. , et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104 (03) 346-354
  • 41 Rivadeneyra L, Carestia A, Etulain J. , et al. Regulation of platelet responses triggered by Toll-like receptor 2 and 4 ligands is another non-genomic role of nuclear factor-kappaB. Thromb Res 2014; 133 (02) 235-243
  • 42 Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M. Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 2001; 166 (03) 2018-2024
  • 43 Fan J, Frey RS, Malik AB. TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J Clin Invest 2003; 112 (08) 1234-1243
  • 44 Satta N, Kruithof EK, Reber G, de Moerloose P. Induction of TLR2 expression by inflammatory stimuli is required for endothelial cell responses to lipopeptides. Mol Immunol 2008; 46 (01) 145-157
  • 45 Shin HS, Xu F, Bagchi A. , et al. Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo. J Immunol 2011; 186 (02) 1119-1130
  • 46 Into T, Kanno Y, Dohkan J. , et al. Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells. J Biol Chem 2007; 282 (11) 8134-8141
  • 47 Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16 (02) 228-231
  • 48 Lehr HA, Sagban TA, Ihling C. , et al. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation 2001; 104 (08) 914-920
  • 49 Kiechl S, Lorenz E, Reindl M. , et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002; 347 (03) 185-192
  • 50 Björkbacka H, Kunjathoor VV, Moore KJ. , et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 2004; 10 (04) 416-421
  • 51 Michelsen KS, Wong MH, Shah PK. , et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 2004; 101 (29) 10679-10684
  • 52 Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 2005; 115 (11) 3149-3156
  • 53 Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002; 105 (10) 1158-1161
  • 54 Liu X, Ukai T, Yumoto H. , et al. Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis 2008; 196 (01) 146-154
  • 55 Ware J, Russell SR, Marchese P, Ruggeri ZM. Expression of human platelet glycoprotein Ib alpha in transgenic mice. J Biol Chem 1993; 268 (11) 8376-8382
  • 56 Raschi E, Testoni C, Bosisio D. , et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood 2003; 101 (09) 3495-3500
  • 57 Harris EN, Gharavi AE, Boey ML. , et al. Anticardiolipin antibodies: detection by radioimmunoassay and association with thrombosis in systemic lupus erythematosus. Lancet 1983; 2 (8361): 1211-1214
  • 58 Manukyan D, Müller-Calleja N, Jäckel S. , et al. Cofactor-independent human antiphospholipid antibodies induce venous thrombosis in mice. J Thromb Haemost 2016; 14 (05) 1011-1020
  • 59 Lackner KJ, Manukyan D, Müller-Calleja N. Pathophysiological insights into the antiphospholipid syndrome. Hamostaseologie 2017; 37 (03) 202-207