Nuklearmedizin 1996; 35(06): 243-250
DOI: 10.1055/s-0038-1629783
Original Article
Schattauer GmbH

Semiquantitative 99mTc-HMPAO-SPECT bei Demenz vom Alzheimer-Typ: Auswirkungen der Wahl von Rekonstruktionsfilter und Referenzregion

Semiquantitative 99mTc-HMPAO-SPECT and Dementia of the Alzheimer Type: Influence of the Selection of Reconstruction-filter and Reference-region
H. Elser
1   Aus der Abteilung für Nuklearmedizin der Radiologischen Universitätsklinik Heidelberg und dem, Deutschland
,
M. Henze
1   Aus der Abteilung für Nuklearmedizin der Radiologischen Universitätsklinik Heidelberg und dem, Deutschland
,
F. J. Spierer
2   Aus der, Psychiatrischen Landeskrankenhaus Wiesloch, Deutschland
,
P. Georgi
1   Aus der Abteilung für Nuklearmedizin der Radiologischen Universitätsklinik Heidelberg und dem, Deutschland
› Author Affiliations
Further Information

Publication History

Eingegangen: 31 January 1996

in revidierter Form: 13 February 1996

Publication Date:
02 February 2018 (online)

Zusammenfassung

Ziel der Studie war es, zu klären, ob die Wahl der Referenzregion und/oder des Rekonstruktionsfilters einen Einfluß auf das Ergebnis der semiquantitativen Analyse einer zur Diagnose der Demenz vom Alzheimer-Typ (DAT) durchgeführten 99mTc-HMPAO-SPECT ausübt. Methoden: Untersucht wurden 19 DAT-Patienten gemäß der Kriterien des NINCDS-ADRDA sowie des DSM-III-R und eine Vergleichsgruppe (n = 14) mit normaler zerebraler Perfusion. Es wurden drei Referenzregionen (Zerebellum, Gesamtschicht, Okzipitalregion) und vier Rekonstruktionsfilter (Hanning fc = 0,7 und 1,0 Nyquist; Butterworth (n = 8) mit fc = 0,5 und 0,9 Nyquist) auf jeweils 12 standardisierte ROI (pro Patient) angewendet. Die Datenauswertung erfolgte mit Hilfe einer ROC-Analyse. Ergebnisse: Es zeigte sich eine Abhängigkeit der bei DAT als charakteristisch beschriebenen bilateralen parieto-temporalen Perfusionsreduktion von den verwendeten Filtern und Referenzregionen. Ein Butterworth-Filter (n = 8; fc = 0,5) kombiniert mit dem Zerebellum als Referenzregion ermöglichte die sicherste Trennung beider Patientengruppen. Schlußfolgerung: Die Wahl der Referenzregion und des Rekonstruktionsfilters hat einen großen Einfluß auf die Ergebnisse einer Semiquantifizierung. Es bedarf daher einer Standardisierung in Abhängigkeit von der jeweiligen Fragestellung.

Summary

Aim: The aim of the study was to clarify, whether the selection of the reference-region and/or the reconstruction-filter influences the result of the semiquantitative analysis of a 99mTc-HMPAO-SPECT that was conducted to diagnose the dementia of the Alzheimer type (DAT). Methods: A group of 19 DAT-patients according to the criteria of NINCDS-ADRDA and DSM-III-R was examined together with a comparison group (n = 14) with normal cerebral perfusion. Three reference-regions (cerebellum, whole slice, occipital cortex) and four reconstruction-filters (Hanning fc = 0.7 and 1.0 Nyquist; Butterworth (n = 8); fc = 0.5 and 0.9 Nyquist) were applied to twelve standardized regions of interest (per patient) respectively. The data was evaluated through a ROC-analysis. Results: It has been showed, that the bilateral parieto-temporal perfusion reduction as a characteristic of DAT depends on the filters and reference-regions used. The most secure separation of both groups of patients was obtained through a Butterworth-filter (n = 8; fc = 0.5) in combination with the cerebellum as reference-region. Conclusion: The selection of the reference-region and the reconstruction-filter has an important influence on the results of a semiquantitative analysis. Therefore standardisation in dependency on the actual questioning is necessary.

 
  • Literatur

  • 1 Alavi A, Jolles PR, Jamieson DG, Reivich M, Chawluk J. Anatomie and functional changes of the brain in normal aging and dementia as demonstrated by MRI, CT and PET. In: Nuclear Medicine Annual 1989. Freeman LM. (Hrsg). New York: Raven Press Ltd.; 1989. pp 49-79.
  • 2 Appledorn CR, Oppenheim BE, Wellman HN. Performance measures in the selection of reconstruction filters for SPECT imaging. J Nucl Med 1985; 26: p36.
  • 3 Barlett EJ, Brodie JD, Wolf AP, Christman DR, Laska E, Meissner M. Reproducibility of cerebral glucose metabolic measurements in resting human subjects. J Cereb Blood Flow Metab 1988; 8: 502-12.
  • 4 Battistin L, Pizzolato G, Dam M, Ponza I, Borsato N, Zanco PL, Ferlin G. Regional cerebral blood flow study with 99mTc-HM-PAO Single Photon Emission Computed Tomography in Alzheimer’s and Multi-Infarct dementia. Eur Neurol 1990; 30: 296-301.
  • 5 Brun A, Englund E. Regional pattern of degeneration in Alzheimer’s Disease: Neuronal loss and histopathological grading. Histopathology 1981; 5: 549-64.
  • 6 Brun A, Englund E. Brain changes in dementia of Alzheimer’s type relevant to new imaging diagnostic methods. Prog Neuro-psychopharmacol Biol Psychiatry 1986; 10: 297-308.
  • 7 Cutler NR. Cerebral metabolism as measured with Positron Emission Tomography (PET) and 18F-2-Deoxy-D-Glucose: Healthy Aging, Alzheimer’s Disease and Down Syndrome. Prog Neuro-Psychopharmacology 1986; 10: 309-21.
  • 8 DeKosky ST, Shih W-J, Schmitt FA, Coupal J, Kirkpatrick C. Assessing utility of Single Photon Emission Computed Tomography (SPECT) scan in Alzheimer’s Disease: Correlation with cognitive severity. Alzheimer Dis Assoc Disord 1990; 4: 14-23.
  • 9 Dewan MJ, Gupta S. Toward a definite diagnosis of Alzheimer’s Disease. Compr Psychiatry 1992; 33: 282-90.
  • 10 Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A. Positron Emission Tomography in Alzheimer’s Disease. Neurology 1986; 36: 879-87.
  • 11 Eidelberg D, Tramo M, Strother SC, Moeller JR, Sidtis JJ, Dhawan V. Variability in regional cerebral metabolic rate for glucose (rCMRGlu) and its consequences for the study of neurologic disease with FDG/PET. Neurology 1988; 38 (Suppl 1): 367.
  • 12 Ell PJ, Komuris K, Jarrit PH. Neuroactiva-tion and Neuroimaging with SPECT. Berlin, Heidelberg, New York: Springer; 1992: 157-71.
  • 13 Ford I, McColl JH, McCormack AG, McCrory SJ. Statistical issues in the analysis of neuroimages. J Cereb Blood Flow Metab 1991; 11: A89-95.
  • 14 Foster N, Chase TN. Cerebral metabolic rate of glucose and Alzheimer’s Disease. J Cereb Blood Flow Metab 1986; 6: 125-7.
  • 15 Gilland DR, Tsui BM, McCartney WH, Perry JR, Berg J. Determination of the optimum filter function for SPECT imaging. J Nucl Med 1988; 29: 643-50.
  • 16 Hachinski VC, Iliff LD, Zilhka E, Du Boulay G, McAllister V, Marshall J. Cerebral blood flow in dementia. Arch Neurol 1975; 32: 632-7.
  • 17 Hanley JA, McNeil BJ. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. Radiology 1982; 143: 29-36.
  • 18 Heiss W-D, Szelies B, Kessler J, Herholz K. Abnormalities of energy metabolism in Alzheimer’s Disease studied with PET. Ann NY Acad Sei 1991; 640: 65-71.
  • 19 Hellman RS, Tikofsky RS, Collier BD, Hoffmann RG, Palmer DW, Glatt S. Alzheimer’s Disease: Quantitative analysis of 123I Iodo-amphetamine SPECT. Radiology 1989; 172: 183-8.
  • 20 Jaszczak RJ, Coleman RE, Whitehead FR. Physical factors affecting quantitative measurements using camera-based Single Photon Emission Computed Tomography (SPECT). IEEE Trans Nucl Sei 1981; 28: 69-80.
  • 21 Johnson KA, Holman BL, Rosen TJ, Nagel JS, English RJ, Growdon J. Iofetamine 123I Single Photon Emission Computed Tomography is accurate in the diagnosis of Alzheimer’s Disease. Arch Intern Med 1990; 150: 752-6.
  • 22 Karbe H, Kertesz A, Davis J, Kemp BJ, Prato FS, Nicholson RL. Quantification of functional deficit in Alzheimer’s disease using a computer assisted mapping program for 99mTc-HMPAO-SPECT. Neuroradiology 1994; 36/1: 1-6.
  • 23 Kreisig T, Schmiedek P, Leinsinger G, Ein-häuptl K, Moser E. 133Xe-DSPECT: Normalwerte von zerebraler Ruhedurchblutung und Reservekapazität. Nuklearmedizin 1987; 26: 192-7.
  • 24 Kushner M, Tobin M, Alavi A, Chawluk J, Rosen M, Fazekas F, Alavi J. Cerebellar glucose consumption in normal and pathologic states using Fluorine-FDG and PET. J Nucl Med 1987; 28: 1667-70.
  • 25 Kuwabara Y, Ichiya Y, Otsuka M, Tahara T, Fukumara T, Gunasekera R. Comparison of 123I-IMP and 99mTc-HM-PAO SPECT studies with PET in dementia. Ann Nucl Med 1990; 4: 75-82.
  • 26 Lake RR, Graham LS, Cohen MB, Metter EJ, O’Rear J. An improved method for quantitative SPECT imaging of regional cerebral perfusion. J Nucl Med 1988; 29: 869.
  • 27 Lassen NA, Andersen A, Friberg L, Paulson OB. The retention of 99mTc-d,l-HM-PAO in the human brain after intracarotid bolus injection: A kinetic analysis. J Cereb Blood Flow Metab 1988; 8: S13-S22.
  • 28 Madsen MT, Park CH. Enhancement of SPECT images by Fourier filtering the projection image set. J Nucl Med 1985; 26: 395-402.
  • 29 McCrory SJ, Ford I. Multivariate analysis of SPECT images with illustrations in Alzheimer’s Disease. Stat Med 1991; 10: 1711-8.
  • 30 McKhann G, Drachman D, Folstein M, Katz-man R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939-44.
  • 31 Montaldi D, Brooks DN, McColl JH, Wyper D, Patterson J, Barron E. Measurements of regional cerebral blood flow and cognitive performance in Alzheimer’s Disease. J Neurol Psychiatry 1990; 53: 33-8.
  • 32 Pearson R, Powell T. The Neuroanatomy of Alzheimer’s Disease. Rev Neurosci 1989; 2: 101-22.
  • 33 Perani D, Di Piero V, Vallar G, Cappa S, Messa C, Bottini G, Berti A. 99mTc-HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer’s Disease. J Nucl Med 1988; 29: 1507-14.
  • 34 Reed BR, Jagust WJ, Seab JP, Ober BA. Memory and regional cerebral blood flow in mildly symptomatic Alzheimer’s Disease. Neurology 1989; 39: 1537-9.
  • 35 Reiche W, Weiller C, Weigmann R, Kaiser H-J, Büll U, Schneider R, Ringelstein EB. Vergleich von MRT- und SPECT-Befunden bei Patienten mit zerebraler Mikroangiopathie. Nuklearmedizin 1991; 30: 161-9.
  • 36 Riccabona G, Macri C. Quantitative aspects of SPECT. Nuklearmedizin 1992; 31: 199-201.
  • 37 Tikofsky RS, Hellman RS. Brain Single Photon Emission Computed Tomography: Newer activation and intervention studies. Semin Nucl Med 1991; 21: 40-57.
  • 38 Toghi H, Chiba K, Saski K, Hiroi S, Ishibashi Y. Cerebral perfusion patterns in vascular dementia of Binswanger type compared with senile dementia of Alzheimer type: A SPECT study. J Neurol 1991; 238: 365-70.
  • 39 Verhoeff NPLG, Buell U, Costa DC, Kirsch G, Lottes G, Moretti JL. Basics and Recommendations for Brain SPECT. Nuklearmedizin 1992; 31: 114-31.
  • 40 Wittchen HU. Diagnostisches und statistisches Manual psychischer Störungen DSM-III-R Richtlinien der American Psychiatric Association, Washington, DC. Weinheim: Beltz Verlag; 1991: 141-65.
  • 41 Zanzonico PB, Bigler RE, Sgouros G, Strauss A. Quantitative SPECT in radiation dosimetry. Semin Nucl Med 1989; 19: 47-61.