Osteologie 2014; 23(03): 195-201
DOI: 10.1055/s-0037-1622017
Osteoimmunologie
Schattauer GmbH

Alterung und Immunität

Ageing and immunity
M. L. Krasselt
1   Sektion Rheumatologie/Gerontologie, Department für Innere Medizin, Dermatologie und Neurologie, Universitätsklinikum Leipzig
,
U. Wagner
1   Sektion Rheumatologie/Gerontologie, Department für Innere Medizin, Dermatologie und Neurologie, Universitätsklinikum Leipzig
› Author Affiliations
Further Information

Publication History

eingereicht: 16 June 2014

Publication Date:
02 January 2018 (online)

Zusammenfassung

Das Altern ist mit einer Zunahme der Häufigkeit degenerativer Erkrankungen ebenso assoziiert wie mit dem vermehrten Auftreten von Autoimmun- und Krebserkrankungen. Die Untersuchungen der vergangenen Jahre unterstützen eindeutig die These eines Immunsystems, das einem physiologischen Alterungsprozess unterliegt. Bezeichnend für diese Immunseneszenz sind zudem Defekte in der zellulären Immunität mit resultierender vermehrter Infektanfälligkeit, dem Verlust zuvor erworbener spezifischer Immunität sowie einer verminderten Effektivität von Impfungen. Hier liegt jedoch auch die Krux: Die Unterscheidung zwischen der physiologischen Alterung einerseits und altersassoziierten Erkrankungen andererseits ist außerordentlich schwierig. Dieser Artikel wird versuchen, den Prozess der Immunseneszenz näher zu charakterisieren und auf die Veränderungen des Immunsystems einzugehen, die möglicherweise eine Rolle bei der Entwicklung von Autoimmunerkrankungen spielen. Es werden auch vielversprechende Ausblicke auf mögliche therapeutische Optionen zur Korrektur dieser Veränderungen gegeben.

Summary

Human ageing is associated with increases in the frequency of degenerative diseases, autoimmune diseases, cancer and a multitude of physiological age-related changes occurring in parallel. The differentiation between physiological ageing and age-related diseases is exceedingly difficult, however, and the pathogenic mechanisms are incompletely understood, which complicates the identification of age-related changes which truly contribute to disease pathogenesis. We will try to characterize the features of immuno-senescence on a cellular and molecular level further in order to give more insight into these changes. Immunologically, the ageing immune system is characterized by features resembling autoimmune diseases such as rheumatoid arthritis. The contribution of immunosenescence to autoimmunity as well as possible consequences of regenerative processes of the immune system will be discussed in this article.

 
  • Literatur

  • 1 Ligthart GJ, Corberand JX, Fournier C. et al. Admission criteria for immunogerontological studies in man: the SENIEUR protocol. Mechanisms of ageing and development 1984; 28 (01) 47-55.
  • 2 Ligthart GJ, Corberand JX, Geertzen HG. et al. Necessity of the assessment of health status in human immunogerontological studies: evaluation of the SENIEUR protocol. Mechanisms of ageing and development 1990; 55 (01) 89-105.
  • 3 Franceschi C, Capri M, Monti D. et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of ageing and development 2007; 128 (01) 92-105.
  • 4 Trzonkowski P, Mysliwska J, Pawelec G, Mysliwski A. From bench to bedside and back: the SENIEUR Protocol and the efficacy of influenza vaccination in the elderly. Biogerontology 2009; 10 (01) 83-94.
  • 5 Fulop Jr T, Foris G, Worum I, Leovey A. Agedependent alterations of Fc gamma receptormediated effector functions of human polymorphonuclear leucocytes. Clinical and experimental immunology 1985; 61 (02) 425-432.
  • 6 Chen MM, Palmer JL, Plackett TP. et al. Age-related differences in the neutrophil response to pulmonary pseudomonas infection. Experimental gerontology 2014; 54: 42-46.
  • 7 Le Garff-Tavernier M, Beziat V, Decocq J. et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 2010; 09 (04) 527-535.
  • 8 Bjorkstrom NK, Riese P, Heuts F. et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 2010; 116 (19) 3853-3864.
  • 9 Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. Journal of clinical immunology 2010; 30 (06) 806-813.
  • 10 Krasselt M, Baerwald C, Wagner U, Rossol M. CD56+ monocytes have a dysregulated cytokine response to lipopolysaccharide and accumulate in rheumatoid arthritis and immunosenescence. Arthritis Res Ther 2013; 15 (05) R139.
  • 11 Solana R, Villanueva JL, Pena J, De la Fuente M. Cell mediated immunity in ageing. Comparative biochemistry and physiology A, Comparative physiology 1991; 99 (1-2): 1-4.
  • 12 Panda A, Qian F, Mohanty S. et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. Journal of immunology 2010; 184 (05) 2518-2527.
  • 13 Gomez CR, Nomellini V, Faunce DE, Kovacs EJ. Innate immunity and aging. Experimental gerontology 2008; 43 (08) 718-728.
  • 14 Varas A, Sacedon R, Hernandez-Lopez C. et al. Age-dependent changes in thymic macrophages and dendritic cells. Microscopy research and technique 2003; 62 (06) 501-507.
  • 15 Agrawal A, Sridharan A, Prakash S, Agrawal H. Dendritic cells and aging: consequences for autoimmunity. Expert Rev Clin Immunol 2012; 08 (01) 73-80.
  • 16 Koch S, Larbi A, Derhovanessian E. et al. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immunity & ageing: I & A 2008; 05: 6.
  • 17 Kilpatrick RD, Rickabaugh T, Hultin LE. et al. Homeostasis of the naive CD4+ T cell compartment during aging. Journal of immunology 2008; 180 (03) 1499-1507.
  • 18 Haynes L, Swain SL. Why aging T cells fail: implications for vaccination. Immunity 2006; 24 (06) 663-666.
  • 19 Prelog M. Aging of the immune system: a risk factor for autoimmunity?. Autoimmunity reviews 2006; 05 (02) 136-139.
  • 20 Fulop Jr T, Gagne D, Goulet AC. et al. Age-related impairment of p56lck and ZAP-70 activities in human T lymphocytes activated through the TcR/ CD3 complex. Experimental gerontology 1999; 34 (02) 197-216.
  • 21 Weyand CM, Brandes JC, Schmidt D. et al. Functional properties of CD4+ CD28- T cells in the aging immune system. Mechanisms of ageing and development 1998; 102 (2-3): 131-147.
  • 22 Nociari MM, Telford W, Russo C. Postthymic development of CD28-CD8+ T cell subset: ageassociated expansion and shift from memory to naive phenotype. Journal of immunology 1999; 162 (06) 3327-3335.
  • 23 Koetz K, Bryl E, Spickschen K. et al. T cell homeostasis in patients with rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America 2000; 97 (16) 9203-9208.
  • 24 Scheuring UJ, Sabzevari H, Theofilopoulos AN. Proliferative arrest and cell cycle regulation in CD8(+)CD28(-) versus CD8(+)CD28(+) T cells. Human immunology 2002; 63 (11) 1000-1009.
  • 25 Bryl E, Witkowski JM. Decreased proliferative capability of CD4(+) cells of elderly people is associated with faster loss of activation-related antigens and accumulation of regulatory T cells. Experimental gerontology 2004; 39 (04) 587-595.
  • 26 Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunological reviews 2005; 205: 158-169.
  • 27 Posnett DN, Edinger JW, Manavalan JS. et al. Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+ CD28- cytotoxic effector clones. International immunology 1999; 11 (02) 229-241.
  • 28 Ghia P, Prato G, Stella S. et al. Age-dependent accumulation of monoclonal CD4+CD8+ double positive T lymphocytes in the peripheral blood of the elderly. Br J Haematol 2007; 139 (05) 780-790.
  • 29 Quandt D, Rothe K, Scholz R. et al. Peripheral CD4CD8 double positive T cells with a distinct helper cytokine profile are increased in rheumatoid arthritis. PloS one 2014; 09 (03) e93293.
  • 30 van Duin D, Allore HG, Mohanty S. et al. Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. The Journal of infectious diseases 2007; 195 (11) 1590-1597.
  • 31 Corsini E, Vismara L, Lucchi L. et al. High interleukin-10 production is associated with low antibody response to influenza vaccination in the elderly. Journal of leukocyte biology 2006; 80 (02) 376-382.
  • 32 Goronzy JJ, Fulbright JW, Crowson CS. et al. Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. Journal of virology 2001; 75 (24) 12182-12187.
  • 33 Kang I, Hong MS, Nolasco H. et al. Age-associated change in the frequency of memory CD4+ T cells impairs long term CD4+ T cell responses to influenza vaccine. Journal of immunology 2004; 173 (01) 673-681.
  • 34 Zhou X, McElhaney JE. Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine 2011; 29 (11) 2169-2177.
  • 35 Sasaki S, Sullivan M, Narvaez CF. et al. Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. The Journal of clinical investigation 2011; 121 (08) 3109-3119.
  • 36 Schenkein JG, Park S, Nahm MH. Pneumococcal vaccination in older adults induces antibodies with low opsonic capacity and reduced antibody potency. Vaccine 2008; 26 (43) 5521-5526.
  • 37 Haq K, McElhaney JE. Immunosenescence: influenza vaccination and the elderly. Current opinion in immunology 2014; 29C: 38-42.
  • 38 Yamaoka M, Kusunoki Y, Kasagi F. et al. Decreases in percentages of naive CD4 and CD8 T cells and increases in percentages of memory CD8 T-cell subsets in the peripheral blood lymphocyte populations of A-bomb survivors. Radiation research 2004; 161 (03) 290-298.
  • 39 Shimizu Y, Mabuchi K, Preston DL, Shigematsu I. Mortality study of atomic-bomb survivors: implications for assessment of radiation accidents. World health statistics quarterly Rapport trimestriel de statistiques sanitaires mondiales 1996; 49 (01) 35-39.
  • 40 Hakoda M, Oiwa H, Kasagi F. et al. Mortality of rheumatoid arthritis in Japan: a longitudinal cohort study. Annals of the rheumatic diseases 2005; 64 (10) 1451-1455.
  • 41 Mishra N, Kammer GM. Clinical expression of autoimmune diseases in older adults. Clinics in geriatric medicine 1998; 14 (03) 515-542.
  • 42 Phillips 2nd LH, Torner JC, Anderson MS, Cox GM. The epidemiology of myasthenia gravis in central and western Virginia. Neurology 1992; 42 (10) 1888-1893.
  • 43 Weyand CM, Schmidt D, Wagner U, Goronzy JJ. The influence of sex on the phenotype of rheumatoid arthritis. Arthritis and rheumatism 1998; 41 (05) 817-822.
  • 44 Pease CT, Bhakta BB, Devlin J, Emery P. Does the age of onset of rheumatoid arthritis influence phenotype?: a prospective study of outcome and prognostic factors. Rheumatology 1999; 38 (03) 228-234.
  • 45 Rantapaa-Dahlqvist S, de Jong BA, Berglin E. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis and rheumatism 2003; 48 (10) 2741-2749.
  • 46 Wagner UG, Koetz K, Weyand CM, Goronzy JJ. Perturbation of the T cell repertoire in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America 1998; 95 (24) 14447-14452.
  • 47 Snyder MR, Weyand CM, Goronzy JJ. The double life of NK receptors: stimulation or co-stimulation?. Trends in immunology 2004; 25 (01) 25-32.
  • 48 Waase I, Kayser C, Carlson PJ. et al. Oligoclonal T cell proliferation in patients with rheumatoid arthritis and their unaffected siblings. Arthritis and rheumatism 1996; 39 (06) 904-913.
  • 49 Bryl E, Vallejo AN, Weyand CM, Goronzy JJ. Down-regulation of CD28 expression by TNFalpha. Journal of immunology 2001; 167 (06) 3231-3238.
  • 50 Schmidt D, Goronzy JJ, Weyand CM. CD4+ CD7- CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. The Journal of clinical investigation 1996; 97 (09) 2027-2037.
  • 51 Namekawa T, Wagner UG, Goronzy JJ, Weyand CM. Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis and rheumatism 1998; 41 (12) 2108-2116.
  • 52 Kimmig S, Przybylski GK, Schmidt CA. et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. The Journal of experimental medicine 2002; 195 (06) 789-794.
  • 53 Kohler S, Thiel A. Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood 2009; 113 (04) 769-774.
  • 54 Schonland SO, Lopez C, Widmann T. et al. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proceedings of the National Academy of Sciences of the United States of America 2003; 100 (23) 13471-13476.
  • 55 Wagner U, Pierer M, Wahle M. et al. Ex vivo homeostatic proliferation of CD4+ T cells in rheumatoid arthritis is dysregulated and driven by membrane-anchored TNFalpha. Journal of immunology 2004; 173 (04) 2825-2833.
  • 56 Lorenzi AR, Morgan TA, Anderson A. et al. Thymic function in juvenile idiopathic arthritis. Annals of the rheumatic diseases 2009; 68 (06) 983-990.
  • 57 Wagner U, Schatz A, Baerwald C, Rossol M. Brief report: deficient thymic output in rheumatoid arthritis despite abundance of prethymic progenitors. Arthritis and rheumatism 2013; 65 (10) 2567-2572.
  • 58 Kolte L, Dreves AM, Ersboll AK. et al. Association between larger thymic size and higher thymic output in human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy. The Journal of infectious diseases 2002; 185 (11) 1578-1585.
  • 59 Min D, Panoskaltsis-Mortari A, Kuro OM. et al. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 2007; 109 (06) 2529-2537.
  • 60 Napolitano LA, Schmidt D, Gotway MB. et al. Growth hormone enhances thymic function in HIV-1-infected adults. The Journal of clinical investigation 2008; 118 (03) 1085-1098.