Synlett 2018; 29(18): 2444-2448
DOI: 10.1055/s-0037-1611062
letter
© Georg Thieme Verlag Stuttgart · New York

Direct Conversion of Benzyl Ethers into Aryl Nitriles

Xinzhe Tian
a   College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. of China
c   School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. of China   Email: renyunlai@126.com
,
Yun-Lai Ren*
c   School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. of China   Email: renyunlai@126.com
,
Fangping Ren
c   School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. of China   Email: renyunlai@126.com
,
Xinqiang Cheng
c   School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. of China   Email: renyunlai@126.com
,
Shuang Zhao
c   School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. of China   Email: renyunlai@126.com
,
Jianji Wang*
b   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. of China   Email: Jwang@htu.cn
› Author Affiliations
The authors would like to thank the Program for Science and Technology Innovation Talents in Universities of Henan Province (Grant No.15HASTIT004) and the Open Project of State Key Laboratory for Oxo Synthesis and Selective Oxidation (Grant No. OSSO-2015-21) for financial support.
Further Information

Publication History

Received: 24 August 2018

Accepted after revision: 21 September 2018

Publication Date:
16 October 2018 (online)


Abstract

A direct method was developed for the conversion of benzyl ethers into aryl nitriles by using NH4OAc as the nitrogen source and ­oxygen as the terminal oxidant with catalysis by TEMPO/HNO3; the method is valuable for both the synthesis of aromatic nitriles and for the deprotection of ether-protected hydroxy groups to form nitrile groups in multistep organic syntheses.

Supporting Information

 
  • References and Notes

    • 1a Moustafa MS, Al-Mousawi SM, El-Seedi HR, Elnagdi MH. Mini-Rev. Med. Chem. 2018; 18: 992
    • 1b Rappoport Z. The Chemistry of the Cyano Group . Wiley-Interscience; London: 1970
    • 2a Takeuchi R, Fujisawa S, Yoshida Y, Sagano J, Hashimoto T, Matsunami A. J. Org. Chem. 2018; 83: 1852
    • 2b Bhagat SB, Telvekar VN. Synlett 2018; 29: 874
    • 2c Ji PF, Manna K, Lin ZK, Feng XY, Urban A, Song Y, Lin WB. J. Am. Chem. Soc. 2017; 139: 7004
    • 2d Labes R, González-Calderón D, Battilocchio C, Mateos C, Cumming GR, de Frutos O, Rincon JA, Ley SV. Synlett 2017; 28: 2855
    • 2e Duan X, Yang K, Tian S, Ma J, Li Y, Zou J, Zhang D, Cui H. Tetrahedron Lett. 2015; 56: 4634
    • 2f Jagadhane PB, Telvekar VN. Synlett 2014; 25: 2636

      For recent reviews on the preparation of aromatic nitriles, see:
    • 3a Yan GB, Zhang Y, Wang JB. Adv. Synth. Catal. 2017; 359: 4068
    • 3b Najam T, Shah SS. A, Mehmood K, Din AU, Rizwan S, Ashfaq M, Shaheen S, Waseem A. Inorg. Chim. Acta 2018; 469: 408
    • 3c Cui J, Song J, Liu Q, Liu H, Dong YH. Chem. Asian J. 2018; 13: 482
  • 4 Beletskaya IP, Sigeev AS, Peregudov AS, Petrovskii PV. J. Organomet. Chem. 2004; 689: 3810
    • 5a Zhang S, Neumann H, Beller M. Chem. Eur. J. 2018; 24: 67
    • 5b Shi Y.-L, Yuan Q, Chen Z.-B, Zhang F.-L, Liu K. Synlett 2018; 29: 359
    • 5c Yu P, Morandi B. Angew. Chem. Int. Ed. 2017; 56: 15693
    • 5d Kristensen SK, Eikeland EZ, Taarning E, Lindhardt AT, Skrydstrup T. Chem. Sci. 2017; 8: 8094
    • 5e Zhang X, Xia A, Chen H, Liu Y. Org. Lett. 2017; 19: 2118
    • 5f Magdesieva TV, Nikitin OM, Polyakova OV, Sazonov PK, Zolotukhina EV, Gorkov KV, Samarov AV, Vorotyntsev MA. ChemistrySelect 2018; 3: 4237
    • 5g Magdesieva TV, Nikitina OM, Zolotukhina EV, Vorotyntsev MA. Electrochim. Acta 2014; 122: 289
    • 5h Nikitin OM, Polyakova OV, Sazonov PK, Yakimansky AV, Goikhman MY, Podeshvo IV, Magdesieva TV. New J. Chem. 2016; 40: 10465
    • 5i Yabe O, Mizufune H, Ikemoto T. Synlett 2009; 1291
    • 6a McManus JB, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
    • 6b Bag S, Jayarajan R, Dutta U, Chowdhury R, Mondal R, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 12538
    • 6c Yu L, Chen X, Song Z.-N, Liu D, Hu L, Yu YQ, Tan Z. Org. Lett. 2018; 20: 3206
    • 7a Dutta I, Yadav S, Sarbajna A, De S, Hölscher M, Leitner W, Bera JK. J. Am. Chem. Soc. 2018; 140: 8662
    • 7b Gaspa S, Porcheddu A, Valentoni A, Garroni S, Enzo S, De Luca L. Eur. J. Org. Chem. 2017; 5519
    • 8a Wang Y, Fu L, Qi H, Chen S, Li Y. Asian J. Org. Chem. 2018; 7: 367
    • 8b González-Fernández R, Crochet P, Cadierno V, Menéndez MI, López R. Chem. Eur. J. 2017; 23: 15210
    • 8c Shi SC, Szostak M. Org. Lett. 2017; 19: 3095
    • 9a Lamani M, Prabhu KR. Angew. Chem. Int. Ed. 2010; 49: 6622
    • 9b He J, Yamaguchi K, Mizuno N. J. Org. Chem. 2011; 76: 4606
    • 10a Zhang X.-L, Liu X.-L, Sang X.-Y, Sheng S.-R. Synth. Commun. 2017; 47: 232
    • 10b Rapeyko A, Climent MJ, Corma A, Concepción P, Iborra S. ACS Catal. 2016; 6: 4564
    • 10c Hartmer MF, Waldvogel SR. Chem. Commun. 2015; 51: 16346
    • 11a Murugesan K, Senthamarai T, Sohail M, Sharif M, Kalevarua NV, Jagadeesh RV. Green Chem. 2018; 20: 266
    • 11b Hyodo K, Togashi K, Oishi N, Hasegawa G, Uchida K. Org. Lett. 2017; 19: 3005
    • 11c Yang X, Fan Z, Shen Z, Li M. Electrochim. Acta 2017; 226: 53
    • 11d Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Adv. Synth. Catal. 2016; 358: 1157
    • 11e Chen Q, Fang C, Shen Z, Li M. Electrochem. Commun. 2016; 64: 51
    • 11f Wu Q, Luo Y, Lei A, You J. J. Am. Chem. Soc. 2016; 138: 2885
    • 11g Kelly CB, Lambert KM, Mercadante MA, Ovian JM, Bailey WF, Leadbeater NE. Angew. Chem. Int. Ed. 2015; 54: 4241
    • 12a Xu B, Jiang Q, Zhao A, Jia J, Liu Q, Luo W, Guo C. Chem. Commun. 2015; 51: 11264
    • 12b Ge J.-J, Yao C.-Z, Wang M.-M, Zheng H.-X, Kang Y.-B, Li Y.-D. Org. Lett. 2016; 18: 228
    • 12c Gu L, Jin C, Zhang H, Liu J, Li G, Yang Z. Org. Biomol. Chem. 2016; 14: 6687
    • 13a Makaravage KJ, Shao X, Brooks AF, Yang L, Sanford MS, Scott PJ. H. Org. Lett. 2018; 20: 1530
    • 13b Wang X.-J, Zhang S.-L. New J. Chem. 2017; 41: 14826
    • 13c Ma L, Placzek MS, Hooker JM, Vasdev N, Liang SH. Chem. Commun. 2017; 53: 6597
  • 14 Ötvös SB, Mészáros R, Varga G, Kocsis M, Kónya Z, Kukovecz Á, Pusztai P, Sipos P, Pálinkó I, Fülöp F. Green Chem. 2018; 20: 1007
    • 15a Song FB, Salter R, Chen L. J. Org. Chem. 2017; 82: 3530
    • 15b Vaillant FL, Wodrich MD, Waser J. Chem. Sci. 2017; 8: 1790
    • 16a Zhao C, Fang W.-Y, Rakesh KP, Qin H.-L. Org. Chem. Front. 2018; 5: 1835
    • 16b Heravi MM, Panahi F, Iranpoor N. Org. Lett. 2018; 20: 2753
    • 16c Wang L, Wang Y, Shen J, Chen Q, He M.-Y. Org. Biomol. Chem. 2018; 16: 4816
    • 17a Ziaee F, Gholizadeh M, Seyedi SM. Appl. Organomet. Chem. 2018; 32: e4253
    • 17b Zhao B, Ren Y.-L, Ren F, Tian X, Zhao S. Lett. Org. Chem. 2018; 15: 627
    • 17c Mao F, Qi Z, Fan H, Sui D, Chen R, Huang J. RSC Adv. 2017; 7: 1498
    • 17d Fan Z, Yang X, Chen C, Shen Z, Li M. J. Electrochem. Soc. 2017; 164: G54
    • 17e Zhang Y, Huang R, Gao B, Zhao J. Catal. Lett. 2016; 146: 220
    • 17f Jagadeesh RV, Junge H, Beller M. Nat. Commun. 2014; 5: 4123
    • 17g Fukuda N, Izumi M, Ikemoto T. Tetrahedron Lett. 2015; 56: 3905
    • 17h Fukuda N, Kajiwara T, Katou T, Majima K, Ikemoto T. Synlett 2013; 24: 1438
    • 18a Yang W, Gao L, Lu J, Song Z. Chem. Commun. 2018; 54: 4834
    • 18b Dumont C, Gauvin RM, Belva F, Sauthier M. ChemSusChem 2018; 11: 1649
    • 19a Lloyd D, Bylsma M, Bright DK, Chen X, Bennett CS. J. Org. Chem. 2017; 82: 3926
    • 19b Heuckendorff M, Poulsen LT, Jensen HH. J. Org. Chem. 2016; 81: 4988
    • 19c Duan X, Kong X, Zhao X, Yang K, Zhou H, Zhou D, Zhang Y, Liu J, Ma J, Liu N, Wang Z. Tetrahedron Lett. 2016; 57: 1446
    • 19d Liu Z, Zhang Y, Cai Z, Sun H, Cheng X. Adv. Synth. Catal. 2015; 357: 589
    • 19e Ho J.-H, Lee Y.-W, Chen Y.-Z, Chen P.-S, Liu W.-Q, Ding Y.-S. Tetrahedron 2013; 69: 7325
    • 19f Noei J, Mirjafari A. Tetrahedron Lett. 2014; 55: 4424
    • 19g Mirjafari A, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Khosropour AR. Tetrahedron Lett. 2010; 51: 3274
    • 19h Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V. C. R. Chim. 2010; 13: 1468
    • 19i Akhlaghinia B. Phosphorus, Sulfur Silicon Relat. Elem. 2004; 179: 1783
    • 20a Ren Y.-L, Wang W, Zhao B, Tian X, Zhao S, Wang J, Li F. ChemCatChem 2016; 8: 3361
    • 20b Ren Y.-L, Shang H, Wang J, Tian X, Zhao S, Wang Q, Li F. Adv. Synth. Catal. 2013; 355: 3437
    • 21a Kamei T, Uryu M, Shimada T. Org. Lett. 2017; 19: 2714
    • 21b Matsumoto K, Tachikawa S, Hashimoto N, Nakano R, Yoshida M, Shindo M. J. Org. Chem. 2017; 82: 4305
    • 21c Li P, Zhao J, Li X, Li F. J. Org. Chem. 2017; 82: 4569
    • 21d Xing Q, Lv H, Xia C, Li F. Chem Commun. 2017; 53: 6914
    • 21e Liu J, Zhang X, Yi H, Liu C, Liu R, Zhang H, Zhuo K, Lei A. Angew. Chem. Int. Ed. 2015; 54: 1261
  • 22 Conversion of Benzyl Ethers into Aryl Nitriles; General ­Procedure The reactions were carried out a ~40 mL, Teflon-lined, stainless-steel autoclave. AcOH (2 mL), TEMPO (0.25 mmol), HNO3 (0.25 mmol), the appropriate benzylic methyl ether (0.5 mmol), and NH4OAc (1.5 mmol) were added sequentially to the autoclave. Subsequently, the autoclave was pressurized to 1 MPa with O2, and the reaction mixture was heated with magnetic stirring at 50 °C for 20 h, then cooled to r.t. The mixture was then diluted with Et2O (15 mL) and H2O (5 mL), and adjusted to pH 7–8 with 2 M aq NaOH. The two layers were separated, and the aqueous layer was extracted with Et2O (3 × 15 mL). The organic layers were combined, dried (Na2SO4), filtered, and concentrated to a volume of approximately 3 mL in a rotary evaporator. GC analysis of the concentrated organic phase, with biphenyl or 1,2,4,5-tetramethylbenzene as internal standard, provided the GC yield of the product. The crude product in the concentrated organic phase from another parallel experiment was purified by column chromatography [silica gel (200–300 mesh), EtOAc–PE]. 3,4,5-Trimethoxybenzonitrile (Table 1, Entry 8)5 Pale-yellow solid, yield: 96.6 mg (90%); mp 92–94 °C (Lit.5 93–95 °C). 1H NMR (500 MHz, CDCl3): δ = 6.87 (s, 2 H, Ph), 3.91 (s, 3 H, CH3), 3.89 (s, 6 H, 2CH3). 13C NMR (125 MHz, CDCl3): δ = 153.6, 142.4, 119.0, 109.5, 106.7, 61.1, 56.4.
    • 23a Dang H.-S, Franchi P, Roberts BP. Chem. Commun. 2000; 499
    • 23b Barnes DM, Barkalow J, Plata DJ. Org. Lett. 2009; 11: 273
    • 24a Nishiguchi T, Okamoto H. J. Chem. Soc. Chem. Commun. 1990; 1607
    • 24b Jereb M. Curr. Org. Chem. 2013; 17: 1694
    • 24c Jereb M, Hribernik L. Green Chem. 2017; 19: 2286
    • 24d Xia Q, Wang Q, Yan C, Dong J, Song H, Li L, Liu Y, Wang Q, Liu X, Song H. Chem. Eur. J. 2017; 23: 10871
  • 25 Noh J.-H, Kim J. J. Org. Chem. 2015; 80: 11624