Synlett 2018; 29(12): 1572-1577
DOI: 10.1055/s-0037-1610188
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Induced Decarboxylative Iodination of Aromatic Carboxylic Acids

Min Jiang
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
,
Haijun Yang
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
,
Yunhe Jin
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
,
Lunyu Ou
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
,
Hua Fu  *
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant No. 21772108) for financial support.
Further Information

Publication History

Received: 17 April 2018

Accepted after revision: 24 May 2018

Publication Date:
18 June 2018 (online)


Abstract

A convenient, efficient and practical visible-light-induced decarboxylative iodination of aromatic carboxylic acids has been developed, and the corresponding aryl iodides were obtained in good yields. The method shows some advantages including the use of readily available aromatic carboxylic acids as the starting materials, simple and mild conditions, high efficiency, wide substrate scope and tolerance of various functional groups.

Supporting Information

 
  • References

  • 1 Hassan J. Sevignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
  • 2 Metal Catalyzed Cross Coupling Reactions . Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998

    • For selected examples, see:
    • 3a Knochel P. Dohle W. Gommermann N. Kneisel FF. Kopp F. Korn T. Sapountzis I. Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
    • 3b Popov I. Lindeman S. Daugulis O. J. Am. Chem. Soc. 2011; 133: 9286
    • 3c Tomashenko OA. Escudero-Adán EC. Belmonte MM. Grushin VV. Angew. Chem. Int. Ed. 2011; 50: 7655
    • 3d Bontemps S. Quesnel JS. Worrall K. Arndtsen BA. Angew. Chem. Int. Ed. 2011; 50: 8948
    • 3e Uyeda C. Tan Y. Fu GC. Peters JC. J. Am. Chem. Soc. 2013; 135: 9548
  • 4 Cerchietti LC. Lopes EC. Yang SN. Hatzi K. Bunting KL. Tsikitas LA. Mallik A. Robles AI. Walling J. Varticovski L. Shaknovich R. Bhalla KN. Chiosis G. Melnick A. Nat. Med. 2009; 15: 1369
  • 5 Hallouard F. Anton N. Choquet P. Constantinesco A. Vandamme T. Biomaterials 2010; 31: 6249
    • 6a Bunevičius R. Kažanavičius G. žalinkevičius R. Prange Jr. AJ. N. Engl. J. Med. 1999; 340: 424
    • 6b Klein I. Ojamaa K. N. Engl. J. Med. 2001; 344: 501

      For selected papers, see:
    • 7a Bachki A. Foabelo F. Yus M. Tetrahedron 1994; 50: 5139
    • 7b Castanet A.-S. Colobert F. Broutin P.-E. Tetrahedron Lett. 2002; 43: 5047
    • 8a Taylor R. Electrophilic Aromatic Substitution . John Wiley; New York: 1990
    • 8b Barluenga J. Gonzalez JM. Garcia-Martin MA. Campos PJ. Asensio G. J. Org. Chem. 1993; 58: 2058
  • 9 Snieckus V. Chem. Rev. 1990; 90: 879

    • Selected papers, see:
    • 10a Klapars A. Buchwald SL. J. Am. Chem. Soc. 2002; 124: 14844
    • 10b Kalyani D. Dick AR. Anani WQ. Sanford MS. Org. Lett. 2006; 8: 2523
    • 10c Mei T.-S. Giri R. Maugel N. Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 5215
    • 10d Dudnik AS. Chernyak N. Huang C. Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 8729
    • 10e Casitas A. Canta M. Solà M. Costas M. Ribas X. J. Am. Chem. Soc. 2011; 133: 19386
    • 10f Imazaki Y. Shirakawa E. Ueno R. Hayashi T. J. Am. Chem. Soc. 2012; 134: 14760
    • 10g Wang X.-C. Hu Y. Bonacorsi S. Hong Y. Burrell R. Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 10326
    • 11a Lindley J. Tetrahedron 1984; 40: 1433
    • 11b Sheppard TD. Org. Biomol. Chem. 2009; 7: 1043
    • 11c Cant AA. Bhalla R. Pimlott SL. Sutherland A. Chem. Commun. 2012; 3993
    • 11d Serra J. Whiteoak CJ. Acuña-Parés F. Font M. Luis JM. Lloret-Fillol J. Ribas X. J. Am. Chem. Soc. 2015; 137: 13389
    • 11e Chen M. Ichikawa S. Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 263
    • 11f Li L. Liu W. Zeng H. Mu X. Cosa G. Mi Z. Li C.-J. J. Am. Chem. Soc. 2015; 137: 8328
    • 11g Newman SG. Howell JK. Nicolaus N. Lautens M. J. Am. Chem. Soc. 2011; 133: 14916
    • 12a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 12b Hodgson HH. Chem. Rev. 1947; 40: 251
    • 12c Roglans A. Pla-Quintana A. Moreno-Mañas M. Chem. Rev. 2006; 106: 4622
    • 13a Hunsdiecker H. Hunsdiecker C. Ber. Dtsch. Chem. Ges. B 1942; 75: 291
    • 13b Crich D. In Comprehensive Organic Synthesis . Vol. 7. Trost BM. Fleming I. Elsevier; Amsterdam: 1991: 717-734
    • 13c Wilson C. Organic Reactions . 87. John Wiley & Sons, Inc; Hoboken N. J.: 2011: 332
    • 13d Crich D. Sasaki K. In Comprehensive Organic Synthesis II . Knochel P. Molander GA. Elsevier; Amsterdam: 2014: 818-836
    • 14a Barnes RA. Prochaska RJ. J. Am. Chem. Soc. 1950; 72: 3188
    • 14b Dauben WG. Tilles H. J. Am. Chem. Soc. 1950; 72: 3185
    • 15a Fu Z. Li Z. Song Y. Yang R. Liu Y. Cai H. J. Org. Chem. 2016; 81: 2794
    • 15b Peng X. Shao X.-F. Liu Z.-Q. Tetrahedron Lett. 2013; 54: 3079
    • 15c Cornella J. Rosillo-Lopez M. Larrosa I. Adv. Synth. Catal. 2011; 353: 1359
    • 15d Luo Y. Pan X. Wu J. Tetrahedron Lett. 2010; 51: 6646
    • 16a Barton DH. R. Lacher B. Zard SZ. Tetrahedron Lett. 1985; 26: 5939
    • 16b Barton DH. R. Lacher B. Zard SZ. Tetrahedron 1987; 43: 4321
    • 16c Kulbitski K. Nisnevich G. Gandelman M. Adv. Synth. Catal. 2011; 353: 1438
    • 17a Zhang YJ. Wei H. Zhang W. Tetrahedron 2009; 65: 1281
    • 17b Zhang AS. Ho JZ. Braun MP. J. Labelled Compd. Radiopharm. 2011; 54: 163
    • 17c Yang X. Sun G. Yang C. Wang B. ChemMedChem 2011; 6: 2294
    • 17d Moriconi A. Cesta MC. Cervellera MN. Aramini A. Coniglio S. Colagioia S. Beccari AR. Bizzarri C. Cavicchia MR. Locati M. Galliera E. Di Benedetto P. Vigilante P. Bertini R. Allegretti M. J. Med. Chem. 2007; 50: 3984
  • 18 Candish L. Standley EA. Gómez-Suárez A. Mukherjee S. Glorius F. Chem. Eur. J. 2016; 22: 9971
  • 19 Perry GJ. P. Quibell JM. Panigrahi A. Larrosa I. J. Am. Chem. Soc. 2017; 139: 11527

    • For selected reviews on visible-light photoredox catalysis, see:
    • 20a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 20b Yoon TP. Ischay MA. Du J. Nat. Chem. 2010; 2: 527
    • 20c Narayanam JM. R. Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 20d Tucker JW. Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 20e Shi L. Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 20f Xuan J. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 20g Hari DP. König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 20h Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 20i Xuan J. Zhang Z.-G. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 20j Jin Y. Fu H. Asian J. Org. Chem. 2017; 6: 368
  • 21 Candish L. Freitag M. Gensch T. Glorius F. Chem. Sci. 2017; 8: 3618
    • 22a Jin Y. Jiang M. Wang H. Fu H. Sci. Rep. 2016; 6: 20068
    • 22b Jiang M. Jin Y. Yang H. Fu H. Sci. Rep. 2016; 6: 26161
    • 22c Jin Y. Yang H. Fu H. Chem. Commun. 2016; 12909
    • 22d Li J. Tian H. Jiang M. Yang H. Zhao Y. Fu H. Chem. Commun. 2016; 8862
    • 22e Gao C. Li J. Yu J. Yang H. Fu H. Chem. Commun. 2016; 7292
    • 22f Zhang H. Zhang P. Jiang M. Yang H. Fu H. Org. Lett. 2017; 19: 1016
    • 22g Jin Y. Yang H. Fu H. Org. Lett. 2016; 18: 6400
    • 22h Jiang M. Yang H. Fu H. Org. Lett. 2016; 18: 1968
    • 22i Jiang M. Yang H. Fu H. Org. Lett. 2016; 18: 5248
    • 22j Li J. Zhang P. Jiang M. Yang H. Fu H. Org. Lett. 2017; 19: 1994
    • 22k Yang J. Jiang M. Jin Y. Yang H. Fu H. Org. Lett. 2017; 19: 2758
    • 22l Li J. Lefebvre Q. Yang H. Fu H. Chem. Commun. 2017; 10299
    • 22m Jiang M. Li H. Yang H. Fu H. Angew. Chem. Int. Ed. 2017; 56: 874
    • 22n Jin Y. Ou L. Yang H. Fu H. J. Am. Chem. Soc. 2017; 139: 14237
  • 23 Mukherjee S. Maji B. Tlahuext-Aca A. Glories F. J. Am. Chem. Soc. 2016; 138: 16200
  • 24 General procedures for the iodination of aromatic carboxylic acids General procedure A: To a 15 mL test tube with septum, Cs2CO3 (0.6 mmol, 195 mg), aromatic carboxylic acid (1; 0.3 mmol), [Ir(dF(CF3)ppy)2dtbbpy]PF6 (D; 6 μmmol, 6.7 mg), N-iodosuccinimide (NIS; 0.9 mmol, 202.5 mg), and I2 (15 μmol, 5 mol%) were added. The tube was evacuated and backfilled with argon three times, and then 3 mL of anhydrous 1,2-dichloroethane (DCE) was added through a syringe under argon. The tube was sealed with Parafilm M® and placed in an oil bath with a contact thermometer, and the reaction was carried out at 50 °C under irradiation with 6 × 5 W blue LEDs (λmax = 455 nm). After 24 or 36 h, the resulting mixture was filtered through a 2 cm thick pad of silica, and the silica was washed with dichloromethane (50 mL). The filtrate was collected and the solvent was removed in vacuo. The crude residue was purified by silica gel flash column chromatography to provide the target product 2 (Note: The reaction was very sensitive to moisture, and the yields sharply decreased to less than 5% when 0.01 equivalent of H2O was added to the reaction system).General procedure B: To a 15 mL test tube with septum, Cs2CO3 (0.6 mmol, 195 mg), aromatic carboxylic acid (1; 0.3 mmol), [Ir(dF(CF3)ppy)2dtbbpy]PF6 (D; 6 μmol, 6.7 mg), NIS (1.5 mmol, 337.5 mg) and I2 (60 μmol, 20 mol%) were added. The tube was evacuated and backfilled with argon three times, and then 3 mL of anhydrous DCE was added through a syringe under argon. The tube was sealed with Parafilm M® and placed in an oil bath with a contact thermometer, and the reaction was carried out at 50 °C under irradiation with 6 × 5 W blue LEDs (λmax = 455 nm). After 24 h or 36 h, the resulting mixture was filtered through a 2 cm thick pad of silica, and the silica was washed with CH2Cl2 (50 mL). The filtrate was collected and the solvent was removed in vacuo. The crude residue was purified by silica gel flash column chromatography to provide the target product 2 (Note: The reaction was very sensitive to moisture, and the yields sharply decreased to less than 5% when 0.01 equivalent of H2O was added to the reaction system).General procedure C: To a 15 mL test tube with septum, Cs2CO3 (0.6 mmol, 195 mg), aromatic carboxylic acid (1; 0.3 mmol), [Ir(dF(CF3)ppy)2dtbbpy]PF6 (D; 6 μmol, 6.7 mg), NIS (1.5 mmol, 337.5 mg) and I2 (60 μmol, 20 mol%) were added. The tube was evacuated and backfilled with argon for times, and then 3 mL of anhydrous CH3CN was added through a syringe under argon. The tube was sealed with Parafilm M® and placed in an oil bath with a contact thermometer, and the reaction was carried out at 50 °C under irradiation with 6 × 5 W blue LEDs (λmax = 455 nm). After 24 h, the resulting mixture was filtered through a 2 cm thick pad of silica, and the silica was washed with CH2Cl2 (50 mL). The filtrate was collected and the solvent was removed in vacuo. The crude residue was purified by silica gel flash column chromatography to provide the target product 2 (Note: The reaction was very sensitive to moisture, and the yields sharply decreased to less than 5% when 0.01 equivalent of H2O was added to the reaction system).Three representative examples are shown as follows:1-Iodo-3-methoxybenzene (2f)25Eluent: pentane/diethyl ether 50:1, the solvent was removed under reduced pressure. Yield: 52.7 mg (75%) by following general procedure A. Colorless oil. 1H NMR (CDCl3, 400 MHz): δ = 7.29 (d, J = 8.24 Hz, 1 H), 7.26 (s, 1 H), 7.0 (t, J = 8.24 Hz, 1 H), 6.87 (d, J = 8.70 Hz, 1 H), 3.78 (s, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 160.2, 130.9, 129.9, 123.1, 113.8, 94.5, 55.5. EI-MS: M+ m/z 234.Methyl 4-iodobenzoate (2s)25Eluent: pentane/diethyl ether 50:1, the solvent was removed under reduced pressure. Yield: 59.7 mg (76%) by following general procedure B. White solid; mp 113–115 °C. 1H NMR (CDCl3, 400 MHz): δ = 7.79 (d, J = 8.24 Hz, 2 H), 7.64 (d, J = 8.24 Hz, 2 H), 3.95 (s, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 167.0, 137.2, 130.6, 129.2, 100.4, 52.2. EI-MS: m/z = 262 [M+].3-Iodopyridine (2ab)26Eluent: pentane/diethyl ether 5:1, the solvent was removed at 0 °C under reduced pressure. Yield: 45.5 mg (65%) by following general procedure C. Yellow oil. 1H NMR (CDCl3, 400 MHz): δ = 8.86 (s, 1 H), 8.79 (d, J = 5.04 Hz, 1 H), 7.94 (d, J = 8.24 Hz, 1 H), 7.42 (t, J = 6.87 Hz, 1 H). 13C NMR (CDCl3, 100 MHz): δ = 146.7, 144.3, 139.6, 130.2, 129.4, 128.9, 128.2, 120.1, 127.7, 98.8. EI-MS: m/z = 205 [M+]
  • 25 Yang H. Li Y. Jiang M. Wang J. Fu H. Chem. Eur. J. 2011; 17: 5652
  • 26 Zhang G. Lv G. Li L. Chen F. Cheng J. Tetrahedron Lett. 2011; 52: 1993