Synlett 2017; 28(16): 2121-2125
DOI: 10.1055/s-0036-1590808
letter
© Georg Thieme Verlag Stuttgart · New York

Tri-Petal Lilac-Like Perylene: Asymmetrical Substituted Platform for Regioselective Ether-Exchange Reaction

Manxi Zhou
a   State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: qflee@mail.buct.edu.cn
,
Lei Zhu
a   State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: qflee@mail.buct.edu.cn
,
Zhimin Sun
a   State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: qflee@mail.buct.edu.cn
,
Zhenqing Yang
b   State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: caodp@mail.buct.edu.cn
,
Dapeng Cao*
b   State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: caodp@mail.buct.edu.cn
,
Qifang Li*
a   State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: qflee@mail.buct.edu.cn
› Author Affiliations
This research was financially supported by the National Natural Science Foundation of China (No. 51273017, 20974013, 11374070).
Further Information

Publication History

Received: 30 April 2017

Accepted after revision: 28 May 2017

Publication Date:
06 July 2017 (online)


Abstract

An asymmetrical tri-petal lilac-like platform based on perylene bisimide (PBI) was designed and synthesized to further perform the ether-exchange reaction, while common tetraphenoxy PBI analogue cannot do it. We found that the tri-petal lilac-like platform strategy not only avoids the regioisomers of difunctionalized PBI, but also is a precise and facile way to achieve regioselective introduction of alkyloxy, alkylthio and C=C double bond ended substituents onto the 1-position of perylene bay without the use and removal of the protecting groups. Due to the tunable photoelectrical properties and functional groups at bay position, these n-type PBI derivatives are promising materials for photovoltaic and supramolecular application.

Supporting Information

 
  • References and Notes

  • 1 Würthner F. Saha-Möller CR. Fimmel B. Ogi S. Leowanawat P. Schmidt D. Chem. Rev. 2016; 116: 962
  • 2 Meng D. Sun D. Zhong C. Liu T. Fan B. Huo L. Li Y. Jiang W. Choi H. Kim T. Kim JY. Sun Y. Wang Z. Heeger AJ. J. Am. Chem. Soc. 2016; 138: 375
  • 3 Kozma E. Catellani M. Dyes and Pigments 2013; 98: 160
  • 4 Sandeep A. Praveen VK. Kartha KK. Karunakaran V. Ajayaghosh A. Chem. Sci. 2016; 7: 4460
  • 5 Spenst P. Würthner F. Angew. Chem. Int. Ed. 2015; 54: 10165
  • 6 Garcia-Iglesias M. de Waal BF. M. Gorbunov AV. Palmans AR. A. Kemerink M. Meijer EW. J. Am. Chem. Soc. 2016; 138: 6217
  • 7 Roche C. Sun H.-J. Leowanawat P. Araoka F. Partridge BE. Peterca M. Wilson DA. Prendergast ME. Heiney PA. Graf R. Spiess HW. Zeng X. Ungar G. Percec V. Nat. Chem. 2016; 8: 80
  • 8 Frischmann PD. Gerber LC. H. Doris SE. Tsai EY. Fan FY. Qu X. Jain A. Persson KA. Chiang Y.-M. Helms BA. Chem. Mater. 2015; 27: 6765
  • 9 Draper ER. Lee JR. Wallace M. Jackel F. Cowan AJ. Adams DJ. Chem. Sci. 2016; 7: 6499
  • 10 Kaur S. Kumar M. Bhalla V. Chem. Commun. 2015; 51: 16327
  • 11 Kaur S. Kumar M. Bhalla V. Chem. Commun. 2015; 51: 4085
  • 12 Ronconi F. Syrgiannis Z. Bonasera A. Prato M. Argazzi R. Caramori S. Cristino V. Bignozzi CA. J. Am. Chem. Soc. 2015; 137: 4630
  • 13 Zhang L. Cole JM. ACS Appl. Mater. Inter. 2015; 7: 3427
  • 14 Stubinitzky C. Bijeljanin A. Antusch L. Ebeling D. Hçlscher H. Wagenknecht H.-A. Chem. Eur. J. 2014; 20: 12009
  • 15 Weiser M. Wagenknecht H.-A. Chem. Commun. 2015; 51: 16530
  • 16 Xu Z. Cheng W. Guo K. Yu J. Shen J. Tang J. Yang W. Yin M. ACS Appl. Mater. Inter. 2015; 7: 9784
  • 17 Würthner F. Stepanenko V. Chen Z. Saha-Möller CR. Kocher N. Stalke D. J. Org. Chem. 2004; 69: 7933
  • 18 Dubey RK. Efimov A. Lemmetyinen H. Chem. Mater. 2011; 23: 778
  • 19 Li Y. Wang N. Gan H. Liu H. Li H. Li Y. He X. Huang C. Cui S. Wang S. Zhu D. J. Org. Chem. 2005; 70: 9686
  • 20 Qiu W. Chen S. Sun X. Liu Y. Zhu D. Org. Lett. 2006; 8: 867
  • 21 Perez-Velasco A. Gorteau V. Matile S. Angew. Chem. Int. Ed. 2008; 47: 921
  • 22 Seifert S. Schmidt D. Würthner F. Chem. Sci. 2015; 6: 1663
  • 23 Klok H.-A. Hernández JR. Becker S. Müllen K. J. Poly. Sci. Poly. Chem. 2001; 39: 1572
  • 24 You C.-C. Würthner F. J. Am. Chem. Soc. 2003; 125: 9716
  • 25 Liu Y. Li Y. Li J. Gan H. Liu H. Li Y. Zhuang J. Lu F. Zhu D. J. Org. Chem. 2004; 69: 9049
  • 26 Osswald P. Reichert M. Bringmann G. Würthner F. J. Org. Chem. 2007; 72: 3403
  • 27 Kaiser TE. Stepanenko V. Würthner F. J. Am. Chem. Soc. 2009; 131: 6719
  • 28 A Representative Procedure for 4: A flask containing 10-undecen-1-ol (2.0 mmol), NaH (5.0 mmol) and THF (10 mL) was flushed with nitrogen and the mixture was stirred at 25 °C for 10 min. PBI 3 (0.99 mmol) and THF (20 mL) were then added. The resulting mixture was heated to reflux for 2 h. The product was isolated by chromatography over silica gel with CH2Cl2–petroleum ether (1:2) as eluent to give a purple solid (0.76 g, 71%); mp 170–172 °C. 1H NMR (400 MHz, CDCl3, TMS): δ = 9.36 (d, J = 8.3 Hz, 1 H), 8.60 (d, J = 8.3 Hz, 1 H), 8.39 (s, 1 H), 8.32 (s, 1 H), 8.21 (s, 1 H), 7.22 (dd, J 1 = 6.5 Hz, J 2 = 8.7 Hz, 4 H), 6.80 (dd, J 1 = 8.8 Hz, J 2 = 13.5 Hz, 4 H), 5.82 (m, 1 H), 4.99 (d, J = 17.1 Hz, 1 H), 4.93 (d, J = 10.2 Hz, 1 H), 4.47 (br, 2 H), 4.10 (m, 4 H), 2.06 (m, 4 H), 1.92 (m, 2 H), 1.62 (m, 2 H), 1.20–1.44 (m, 44 H), 0.80–1.00 (m, 12 H). 13C NMR (100 MHz, CDCl3, TMS): δ = 164.2, 164.0, 163.9, 163.7, 157.4, 156.3, 155.3, 152.8, 152.6, 147.3, 147.2, 139.2, 133.3, 131.7, 130.4, 133.3, 131.7, 130.4, 126.4, 124.1, 123.2, 122.7, 122.6, 121.6, 121.5, 120.8, 120.6, 120.5, 119.4, 119.3, 119.2, 114.7, 114.1, 70.4, 44.4, 44.3, 38.0, 34.4, 34.3, 33.8, 31.4, 30.8, 29.5, 29.4, 29.3, 29.1, 28.9, 28.8, 26.3, 24.1, 23.1, 14.1, 10.6. HRMS: m/z [M+] calcd for C71H86N2O7: 1078.6435; found: 1078.6476.
  • 29 Zhao Y. Wasielewski MR. Tetrahedron Lett. 1999; 40: 7047
  • 30 Zhou M. Wang M. Zhu L. Yang Z. Jiang C. Cao D. Li Q. Macromol. Rapid Comm. 2015; 36: 2156
  • 31 Jiang W. Ye L. Li X. Xiao C. Tan F. Zhao W. Hou J. Wang Z. Chem. Commun. 2014; 50: 1024
  • 32 Jiménez AJ. Lin M.-J. Burschka C. Becker J. Settels V. Engelsb B. Würthner F. Chem. Sci. 2014; 5: 608
  • 33 Zhao C. Zhang Y. Li R. Li X. Jiang J. J. Org. Chem. 2007; 72: 2402