Semin Respir Crit Care Med 2015; 36(06): 859-869
DOI: 10.1055/s-0035-1565253
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Metabolic Management during Critical Illness: Glycemic Control in the ICU

Shyoko Honiden
1   Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut
,
Silvio E. Inzucchi
2   Department of Medicine, Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut
› Author Affiliations
Further Information

Publication History

Publication Date:
23 November 2015 (online)

Abstract

Hyperglycemia is a commonly encountered metabolic derangement in the ICU. Important cellular pathways, such as those related to oxidant stress, immunity, and cellular homeostasis, can become deranged with prolonged and uncontrolled hyperglycemia. There is additionally a complex interplay between nutritional status, ambient glucose concentrations, and protein catabolism. While the nuances of glucose management in the ICU have been debated, results from landmark studies support the notion that for most critically ill patients moderate glycemic control is appropriate, as reflected by recent guidelines. Beyond the target population and optimal glucose range, additional factors such as hypoglycemia and glucose variability are important metrics to follow. In this regard, new technologies such as continuous glucose sensors may help alleviate the risks associated with such glucose fluctuations in the ICU. In this review, we will explore the impact of hyperglycemia upon critical cellular pathways and how nutrition provided in the ICU affects blood glucose. Additionally, important clinical trials to date will be summarized. A practical and comprehensive approach to glucose management in the ICU will be outlined, touching upon important issues such as glucose variability, target population, and hypoglycemia.

 
  • References

  • 1 Plummer MP, Bellomo R, Cousins CE , et al. Dysglycaemia in the critically ill and the interaction of chronic and acute glycaemia with mortality. Intensive Care Med 2014; 40 (7) 973-980
  • 2 Cely CM, Arora P, Quartin AA, Kett DH, Schein RM. Relationship of baseline glucose homeostasis to hyperglycemia during medical critical illness. Chest 2004; 126 (3) 879-887
  • 3 Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc 2003; 78 (12) 1471-1478
  • 4 Laird AM, Miller PR, Kilgo PD, Meredith JW, Chang MC. Relationship of early hyperglycemia to mortality in trauma patients. J Trauma 2004; 56 (5) 1058-1062
  • 5 Rovlias A, Kotsou S. The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery 2000; 46 (2) 335-342 , discussion 342–343
  • 6 Brunkhorst FM, Engel C, Bloos F , et al; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358 (2) 125-139
  • 7 Finfer S, Chittock DR, Su SY , et al; NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360 (13) 1283-1297
  • 8 Preiser JC, Devos P, Ruiz-Santana S , et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med 2009; 35 (10) 1738-1748
  • 9 Van den Berghe G, Wilmer A, Hermans G , et al. Intensive insulin therapy in the medical ICU. N Engl J Med 2006; 354 (5) 449-461
  • 10 van den Berghe G, Wouters P, Weekers F , et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345 (19) 1359-1367
  • 11 Hoang QN, Pisani MA, Inzucchi S, Hu B, Honiden S. The prevalence of undiagnosed diabetes mellitus and the association of baseline glycemic control on mortality in the intensive care unit: a prospective observational study. J Crit Care 2014; 29 (6) 1052-1056
  • 12 Krinsley JS, Egi M, Kiss A , et al. Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: an international multicenter cohort study. Crit Care 2013; 17 (2) R37
  • 13 Siegelaar SE, Hickmann M, Hoekstra JB, Holleman F, DeVries JH. The effect of diabetes on mortality in critically ill patients: a systematic review and meta-analysis. Crit Care 2011; 15 (5) R205
  • 14 Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab 2002; 87 (3) 978-982
  • 15 Lang CH, Dobrescu C, Bagby GJ. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 1992; 130 (1) 43-52
  • 16 Flores EA, Istfan N, Pomposelli JJ, Blackburn GL, Bistrian BR. Effect of interleukin-1 and tumor necrosis factor/cachectin on glucose turnover in the rat. Metabolism 1990; 39 (7) 738-743
  • 17 Khani S, Tayek JA. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin Sci (Lond) 2001; 101 (6) 739-747
  • 18 Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg 1999; 67 (2) 352-360 , discussion 360–362
  • 19 Perner A, Nielsen SE, Rask-Madsen J. High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med 2003; 29 (4) 642-645
  • 20 Nielson CP, Hindson DA. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes 1989; 38 (8) 1031-1035
  • 21 Rassias AJ, Marrin CA, Arruda J, Whalen PK, Beach M, Yeager MP. Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg 1999; 88 (5) 1011-1016
  • 22 Ling PR, Smith RJ, Bistrian BR. Hyperglycemia enhances the cytokine production and oxidative responses to a low but not high dose of endotoxin in rats. Crit Care Med 2005; 33 (5) 1084-1089
  • 23 Iwasaki Y, Kambayashi M, Asai M, Yoshida M, Nigawara T, Hashimoto K. High glucose alone, as well as in combination with proinflammatory cytokines, stimulates nuclear factor kappa-B-mediated transcription in hepatocytes in vitro. J Diabetes Complications 2007; 21 (1) 56-62
  • 24 Choi SW, Benzie IF, Ma SW, Strain JJ, Hannigan BM. Acute hyperglycemia and oxidative stress: direct cause and effect?. Free Radic Biol Med 2008; 44 (7) 1217-1231
  • 25 Weidig P, McMaster D, Bayraktutan U. High glucose mediates pro-oxidant and antioxidant enzyme activities in coronary endothelial cells. Diabetes Obes Metab 2004; 6 (6) 432-441
  • 26 West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000; 17 (3) 171-180
  • 27 Carré JE, Orban JC, Re L , et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med 2010; 182 (6) 745-751
  • 28 Vanhorebeek I, Gunst J, Derde S , et al. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab 2011; 96 (4) E633-E645
  • 29 Rodnick KJ, Piper RC, Slot JW, James DE. Interaction of insulin and exercise on glucose transport in muscle. Diabetes Care 1992; 15 (11) 1679-1689
  • 30 Devlin JT, Hirshman M, Horton ED, Horton ES. Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes 1987; 36 (4) 434-439
  • 31 Kennedy JW, Hirshman MF, Gervino EV , et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 1999; 48 (5) 1192-1197
  • 32 Patel BK, Pohlman AS, Hall JB, Kress JP. Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated. Chest 2014; 146 (3) 583-589
  • 33 Mashako MN, Bernard C, Cezard JP, Chayvialle JA, Navarro J. Effect of total parenteral nutrition, constant rate enteral nutrition, and discontinuous oral feeding on plasma cholecystokinin immunoreactivity in children. J Pediatr Gastroenterol Nutr 1987; 6 (6) 948-952
  • 34 Stoll B, Puiman PJ, Cui L , et al. Continuous parenteral and enteral nutrition induces metabolic dysfunction in neonatal pigs. JPEN J Parenter Enteral Nutr 2012; 36 (5) 538-550
  • 35 Hooper MH, Marik PE. Controversies and misconceptions in intensive care unit nutrition. Clin Chest Med 2015; 36 (3) 409-418
  • 36 MacGregor IL, Gueller R, Watts HD, Meyer JH. The effect of acute hyperglycemia on gastric emptying in man. Gastroenterology 1976; 70 (2) 190-196
  • 37 Oster-Jørgensen E, Pedersen SA, Larsen ML. The influence of induced hyperglycaemia on gastric emptying rate in healthy humans. Scand J Clin Lab Invest 1990; 50 (8) 831-836
  • 38 Samsom M, Akkermans LM, Jebbink RJ, van Isselt H, vanBerge-Henegouwen GP, Smout AJ. Gastrointestinal motor mechanisms in hyperglycaemia induced delayed gastric emptying in type I diabetes mellitus. Gut 1997; 40 (5) 641-646
  • 39 Nguyen N, Ching K, Fraser R, Chapman M, Holloway R. The relationship between blood glucose control and intolerance to enteral feeding during critical illness. Intensive Care Med 2007; 33 (12) 2085-2092
  • 40 Rayner CK, Su YC, Doran SM, Jones KL, Malbert CH, Horowitz M. The stimulation of antral motility by erythromycin is attenuated by hyperglycemia. Am J Gastroenterol 2000; 95 (9) 2233-2241
  • 41 Van den Berghe G, Wilmer A, Milants I , et al. Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm. Diabetes 2006; 55 (11) 3151-3159
  • 42 Zander R, Boldt J, Engelmann L, Mertzlufft F, Sirtl C, Stuttmann R. The design of the VISEP trial. Critical appraisal [in German]. Anaesthesist 2007; 56 (1) 71-77
  • 43 Griesdale DE, de Souza RJ, van Dam RM , et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ 2009; 180 (8) 821-827 , discussion 799–800
  • 44 Moghissi ES, Korytkowski MT, DiNardo M , et al; American Association of Clinical Endocrinologists; American Diabetes Association. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Endocr Pract 2009; 15 (4) 353-369
  • 45 Dellinger RP, Levy MM, Rhodes A , et al; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41 (2) 580-637
  • 46 Falciglia M, Freyberg RW, Almenoff PL, D'Alessio DA, Render ML. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit Care Med 2009; 37 (12) 3001-3009
  • 47 Kosiborod M, Inzucchi SE, Krumholz HM , et al. Glucometrics in patients hospitalized with acute myocardial infarction: defining the optimal outcomes-based measure of risk. Circulation 2008; 117 (8) 1018-1027
  • 48 Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 2003; 52 (11) 2795-2804
  • 49 Quagliaro L, Piconi L, Assaloni R , et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 2005; 183 (2) 259-267
  • 50 Egi M. Blood glucose control in critically ill perioperative patients [in Japanese]. Masui 2011; 60 (3) 285-292
  • 51 Lanspa MJ, Hirshberg EL, Phillips GD, Holmen J, Stoddard G, Orme J. Moderate glucose control is associated with increased mortality compared with tight glucose control in critically ill patients without diabetes. Chest 2013; 143 (5) 1226-1234
  • 52 Kushner M, Nencini P, Reivich M , et al. Relation of hyperglycemia early in ischemic brain infarction to cerebral anatomy, metabolism, and clinical outcome. Ann Neurol 1990; 28 (2) 129-135
  • 53 Kimura K, Iguchi Y, Inoue T , et al. Hyperglycemia independently increases the risk of early death in acute spontaneous intracerebral hemorrhage. J Neurol Sci 2007; 255 (1–2) 90-94
  • 54 Salim A, Hadjizacharia P, Dubose J , et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg 2009; 75 (1) 25-29
  • 55 Jeremitsky E, Omert LA, Dunham CM, Wilberger J, Rodriguez A. The impact of hyperglycemia on patients with severe brain injury. J Trauma 2005; 58 (1) 47-50
  • 56 Li PA, He QP, Csiszar K, Siesjö BK. Does long-term glucose infusion reduce brain damage after transient cerebral ischemia?. Brain Res 2001; 912 (2) 203-205
  • 57 Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 2005; 64 (8) 1348-1353
  • 58 Bilotta F, Spinelli A, Giovannini F, Doronzio A, Delfini R, Rosa G. The effect of intensive insulin therapy on infection rate, vasospasm, neurologic outcome, and mortality in neurointensive care unit after intracranial aneurysm clipping in patients with acute subarachnoid hemorrhage: a randomized prospective pilot trial. J Neurosurg Anesthesiol 2007; 19 (3) 156-160
  • 59 Bilotta F, Caramia R, Paoloni FP, Delfini R, Rosa G. Safety and efficacy of intensive insulin therapy in critical neurosurgical patients. Anesthesiology 2009; 110 (3) 611-619
  • 60 Bilotta F, Caramia R, Cernak I , et al. Intensive insulin therapy after severe traumatic brain injury: a randomized clinical trial. Neurocrit Care 2008; 9 (2) 159-166
  • 61 Vespa P, Boonyaputthikul R, McArthur DL , et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med 2006; 34 (3) 850-856
  • 62 Kosiborod M, Inzucchi SE, Goyal A , et al. Relationship between spontaneous and iatrogenic hypoglycemia and mortality in patients hospitalized with acute myocardial infarction. JAMA 2009; 301 (15) 1556-1564
  • 63 Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med 2007; 35 (10) 2262-2267
  • 64 Vriesendorp TM, DeVries JH, van Santen S , et al. Evaluation of short-term consequences of hypoglycemia in an intensive care unit. Crit Care Med 2006; 34 (11) 2714-2718
  • 65 Vriesendorp TM, van Santen S, DeVries JH , et al. Predisposing factors for hypoglycemia in the intensive care unit. Crit Care Med 2006; 34 (1) 96-101
  • 66 Atkin SH, Dasmahapatra A, Jaker MA, Chorost MI, Reddy S. Fingerstick glucose determination in shock. Ann Intern Med 1991; 114 (12) 1020-1024
  • 67 Desachy A, Vuagnat AC, Ghazali AD , et al. Accuracy of bedside glucometry in critically ill patients: influence of clinical characteristics and perfusion index. Mayo Clin Proc 2008; 83 (4) 400-405
  • 68 Kanji S, Buffie J, Hutton B , et al. Reliability of point-of-care testing for glucose measurement in critically ill adults. Crit Care Med 2005; 33 (12) 2778-2785
  • 69 Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 2006; 105 (2) 244-252
  • 70 Dossett LA, Cao H, Mowery NT, Dortch MJ, Morris Jr JM, May AK. Blood glucose variability is associated with mortality in the surgical intensive care unit. Am Surg 2008; 74 (8) 679-685 , discussion 685
  • 71 Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med 2008; 36 (11) 3008-3013
  • 72 Bagshaw SM, Bellomo R, Jacka MJ, Egi M, Hart GK, George C ; ANZICS CORE Management Committee. The impact of early hypoglycemia and blood glucose variability on outcome in critical illness. Crit Care 2009; 13 (3) R91
  • 73 Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 2001; 281 (5) E924-E930
  • 74 Monnier L, Mas E, Ginet C , et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006; 295 (14) 1681-1687
  • 75 Hirsch IB. Glycemic variability: it's not just about A1C anymore!. Diabetes Technol Ther 2005; 7 (5) 780-783
  • 76 Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control?. J Diabetes Complications 2005; 19 (3) 178-181
  • 77 Wahl HG. How accurately do we measure blood glucose levels in intensive care unit (ICU) patients?. Best Pract Res Clin Anaesthesiol 2009; 23 (4) 387-400
  • 78 Blood Glucose Monitoring Test Systems for Prescription Point-of-Care Use; Draft Guidance for Industry and Food and Drug Administration Staff. 2014. Available at: https://www.federalregister.gov/articles/2014/01/07/2014-00023/blood-glucose-monitoring-test-systems-for-prescription-point-of-care-use-draft-guidance-for-industry . Accessed May 25, 2015
  • 79 Center for Clinical Standards and Quality/Survey & Certification Group. 2015. Available at: http://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/Downloads/Survey-and-Cert-Letter-15-11.PDF . Accessed May 25, 2015
  • 80 Klonoff DC, Buckingham B, Christiansen JS , et al; Endocrine Society. Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2011; 96 (10) 2968-2979
  • 81 Joseph JI, Hipszer B, Mraovic B, Chervoneva I, Joseph M, Grunwald Z. Clinical need for continuous glucose monitoring in the hospital. J Diabetes Sci Tech 2009; 3 (6) 1309-1318
  • 82 Tamborlane WV, Beck RW, Bode BW , et al; Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 2008; 359 (14) 1464-1476
  • 83 Schierenbeck F, Öwall A, Franco-Cereceda A, Liska J. Evaluation of a continuous blood glucose monitoring system using a central venous catheter with an integrated microdialysis function. Diabetes Technol Ther 2013; 15 (1) 26-31
  • 84 Foubert LA, Lecomte PV, Nobels FR, Gulino AM, De Decker KH. Accuracy of a feasibility version of an intravenous continuous glucose monitor in volunteers with diabetes and hospitalized patients. Diabetes Technol Ther 2014; 16 (12) 858-866
  • 85 Sechterberger MK, van der Voort PH, Strasma PJ, DeVries JH. Accuracy of intra-arterial and subcutaneous continuous glucose monitoring in postoperative cardiac surgery patients in the ICU. J Diabetes Sci Tech 2015; 9 (3) 663-667
  • 86 van Hooijdonk RT, Winters T, Fischer JC , et al. Accuracy and limitations of continuous glucose monitoring using spectroscopy in critically ill patients. Ann Intensive Care 2014; 4 (1) 8
  • 87 De Block C, Manuel-Y-Keenoy B, Van Gaal L, Rogiers P. Intensive insulin therapy in the intensive care unit: assessment by continuous glucose monitoring. Diabetes Care 2006; 29 (8) 1750-1756
  • 88 Goldberg PA, Siegel MD, Russell RR , et al. Experience with the continuous glucose monitoring system in a medical intensive care unit. Diabetes Technol Ther 2004; 6 (3) 339-347
  • 89 Corstjens AM, Ligtenberg JJ, van der Horst IC , et al. Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients. Crit Care 2006; 10 (5) R135
  • 90 Brunner R, Kitzberger R, Miehsler W, Herkner H, Madl C, Holzinger U. Accuracy and reliability of a subcutaneous continuous glucose-monitoring system in critically ill patients. Crit Care Med 2011; 39 (4) 659-664
  • 91 Kopecký P, Mráz M, Bláha J , et al. The use of continuous glucose monitoring combined with computer-based eMPC algorithm for tight glucose control in cardiosurgical ICU. Biomed Res Int 2013; 2013: 186439
  • 92 Kosiborod M, Gottlieb RK, Sekella JA , et al. Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit. BMJ Open Diabetes Res Care 2014; 2 (1) e000037
  • 93 Schuster KM, Barre K, Inzucchi SE, Udelsman R, Davis KA. Continuous glucose monitoring in the surgical intensive care unit: concordance with capillary glucose. J Trauma Acute Care Surg 2014; 76 (3) 798-803
  • 94 Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987; 10 (5) 622-628
  • 95 Rabiee A, Andreasik V, Abu-Hamdah R , et al. Numerical and clinical accuracy of a continuous glucose monitoring system during intravenous insulin therapy in the surgical and burn intensive care units. J Diabetes Sci Tech 2009; 3 (4) 951-959
  • 96 Boom DT, Sechterberger MK, Rijkenberg S , et al. Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial. Crit Care 2014; 18 (4) 453
  • 97 Holzinger U, Warszawska J, Kitzberger R , et al. Real-time continuous glucose monitoring in critically ill patients: a prospective randomized trial. Diabetes Care 2010; 33 (3) 467-472
  • 98 Breton M, Farret A, Bruttomesso D , et al; International Artificial Pancreas Study Group. Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes 2012; 61 (9) 2230-2237
  • 99 Krenitsky J. Glucose control in the intensive care unit: a nutrition support perspective. Nutr Clin Pract 2011; 26 (1) 31-43
  • 100 Rice TW, Wheeler AP, Thompson BT , et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA 2012; 307 (8) 795-803
  • 101 Hsu CW, Sun SF, Lin SL, Huang HH, Wong KF. Moderate glucose control results in less negative nitrogen balances in medical intensive care unit patients: a randomized, controlled study. Crit Care 2012; 16 (2) R56
  • 102 Leite HP, de Lima LF, de Oliveira Iglesias SB, Pacheco JC, de Carvalho WB. Malnutrition may worsen the prognosis of critically ill children with hyperglycemia and hypoglycemia. JPEN J Parenter Enteral Nutr 2013; 37 (3) 335-341
  • 103 Kauffmann RM, Hayes RM, VanLaeken AH , et al. Hypocaloric enteral nutrition protects against hypoglycemia associated with intensive insulin therapy better than intravenous dextrose. Am Surg 2014; 80 (11) 1106-1111
  • 104 de Azevedo JR, de Araujo LO, da Silva WS, de Azevedo RP. A carbohydrate-restrictive strategy is safer and as efficient as intensive insulin therapy in critically ill patients. J Crit Care 2010; 25 (1) 84-89
  • 105 Mesejo A, Acosta JA, Ortega C , et al. Comparison of a high-protein disease-specific enteral formula with a high-protein enteral formula in hyperglycemic critically ill patients. Clin Nutr 2003; 22 (3) 295-305
  • 106 Déchelotte P, Hasselmann M, Cynober L , et al. L-alanyl-L-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med 2006; 34 (3) 598-604
  • 107 Bakalar B, Duska F, Pachl J , et al. Parenterally administered dipeptide alanyl-glutamine prevents worsening of insulin sensitivity in multiple-trauma patients. Crit Care Med 2006; 34 (2) 381-386
  • 108 Heyland D, Muscedere J, Wischmeyer PE , et al; Canadian Critical Care Trials Group. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 2013; 368 (16) 1489-1497