Synlett 2016; 27(18): 2626-2630
DOI: 10.1055/s-0035-1560561
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Mediated Coupling of Boronic Acids, Amines, and Carbon Disulfide: An Approach to Organic Dithiocarbamates

Chaorong Qi*
School of Chemistry and Chemical Engineering, State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. of China   Email: crqi@scut.edu.cn
,
Tianzuo Guo
School of Chemistry and Chemical Engineering, State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. of China   Email: crqi@scut.edu.cn
,
Wenfang Xiong
School of Chemistry and Chemical Engineering, State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. of China   Email: crqi@scut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 25 May 2016

Accepted after revision: 17 July 2016

Publication Date:
08 August 2016 (online)


Abstract

An efficient copper-mediated three-component coupling reaction of boronic acids, amines, and carbon disulfide has been developed, which provides a new approach to a wide range of functionalized dithiocarbamates in good to excellent yields. The present methodology has many advantages, such as mild reaction conditions, easily available substrates, wide substrate scope, and high functional-group tolerance.

Supporting Information

 
  • References and Notes

    • 1a Hou X, Ge Z, Wang T, Guo W, Cui J, Cheng T, Lai C, Li R. Bioorg. Med. Chem. Lett. 2006; 16: 4214
    • 1b Huang W, Ding Y, Miao Y, Liu MZ, Yang GF. Eur. J. Med. Chem. 2009; 44: 3687
    • 1c Li R.-D, Zhang X, Li Q.-Y, Ge Z.-M, Li R.-T. Bioorg. Med. Chem. Lett. 2011; 21: 3637
    • 1d Zahran MA.-H, Salem TA.-R, Samaka RM, Agwa HS, Awad AR. Bioorg. Med. Chem. 2008; 16: 9708
    • 2a Betou M, Male L, Steed JW, Grainger RS. Chem. Eur. J. 2014; 20: 6505
    • 2b Chen N, Zhong X, Li P, Xu J. Eur. J. Org. Chem. 2015; 802
    • 2c Yu C, Zhang C, Shi X. Eur. J. Org. Chem. 2012; 1953
  • 3 Morf P, Raimondi F, Nothofer H.-G, Schnyder B, Yasuda A, Wessels JM, Jung TA. Langmuir 2006; 22: 658
  • 4 Mayadunne RT. A, Rizzardo E, Chiefari J, Chong YK, Moad G, Thang SH. Macromolecules 1999; 32: 6977
    • 5a Tilles HJ. Am. Chem. Soc. 1959; 81: 714
    • 5b Walter W, Bode K.-D. Angew. Chem., Int. Ed. Engl. 1967; 6: 281
    • 6a Chen Z.-C, Jin Y.-Y, Stang PJ. J. Org. Chem. 1987; 52: 4117
    • 6b Liu Y, Bao W. Tetrahedron Lett. 2007; 48: 4785
    • 7a Azizi N, Aryanasab F, Saidi MR. Org. Lett. 2006; 8: 5275
    • 7b Yin X, Guo Y, Liu C, Wang Z, Zhang B. Tetrahedron Lett. 2015; 56: 5135
    • 7c Salvatore RN, Sahab S, Jung KW. Tetrahedron Lett. 2001; 42: 2055
    • 7d Bhadra S, Saha A, Ranu BC. Green Chem. 2008; 10: 1224
    • 8a Azizi N, Aryannasab F, Torkiyan L, Ziyaei A, Saidi MR. J. Org. Chem. 2006; 71: 3634
    • 8b Karmakar B, Banerji J. Tetrahedron Lett. 2011; 52: 6584
    • 8c Yadav LD. S, Patel R, Srivastava VP. Tetrahedron Lett. 2009; 50: 1335
    • 8d Ranu BC, Saha A, Banerjee S. Eur. J. Org. Chem. 2008; 519
  • 9 Chaturvedi D, Ray S. Tetrahedron Lett. 2006; 47: 1307
  • 10 Chatterjee T, Bhadra S, Ranu BC. Green Chem. 2011; 13: 1837
  • 11 Sha Q, Wei Y.-Y. Org. Biomol. Chem. 2013; 11: 5615
    • 12a Huang C, Liang T, Harada S, Lee E, Ritter T. J. Am. Chem. Soc. 2011; 133: 13308
    • 12b Zhu C, Li G, Ess DH, Falck JR, Kürti L. J. Am. Chem. Soc. 2012; 134: 18253
    • 12c Zhu D, Wu Y, Wu B, Luo B, Ganesan A, Wu F.-H, Pi R, Huang P, Wen S. Org. Lett. 2014; 16: 2350
    • 12d Voth S, Hollett JW, McCubbin JA. J. Org. Chem. 2015; 80: 2545
    • 12e Johnson MW, Bagley SW, Mankad NP, Bergman RG, Mascitti V, Toste FD. Angew. Chem. Int. Ed. 2014; 53: 4404
    • 12f Wu G, Deng Y, Wu C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 10510
    • 12g Zheng C, Stahl SS. Chem. Commun. 2015; 51: 12771
    • 12h Li J, Neuville L. Org. Lett. 2013; 15: 6124
    • 13a Partyka DV. Chem. Rev. 2011; 111: 1529
    • 13b Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
    • 13c Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417

      Representative reviews on Chan–Evans–Lam coupling reaction, see:
    • 14a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 14b Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 14c Rao KS, Wu T.-S. Tetrahedron 2012; 68: 7735
    • 14d Qiao JX, Lam PY. S. Synthesis 2011; 829
    • 15a Xiong W, Qi C, He H, Ouyang L, Zhang M, Jiang H. Angew. Chem. Int. Ed. 2015; 54: 3084
    • 15b Xiong W, Qi C, Peng Y, Guo T, Zhang M, Jiang H. Chem. Eur. J. 2015; 21: 14314
  • 16 Typical Procedure for the Synthesis of Compound 3aa A 25 mL dried Schlenk tube was charged with boronic acid 1a (0.5 mmol), diethylamine (2a, 2.5 mmol), CS2 (1.0 mmol), Cu(OAc)2 (1.0 mmol), K2CO3 (1.5 mmol), and MeCN (4 mL) at room temperature. The reaction mixture was stirred at 60 °C for 10 h under air. After the reaction was completed, the mixture was cooled to room temperature and filtered through a plug of Celite. The filtrate was then concentrated in vacuo to afford the crude product, which was then subjected to chromatography on silica gel with hexanes–EtOAc (20:1) to give the desired product 3aa as a pale yellow oil; 88% isolated yield (96% GC yield). 1H NMR (400 MHz, CDCl3): δ = 7.48 (q, J = 8.0 Hz, 5 H), 4.04 (q, J = 4.0 Hz, 2 H), 3.86 (q, J = 8.0 Hz, 2 H), 1.40 (t, J = 8.0 Hz, 3 H), 1.30 (t, J = 8.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 195.78, 137.00, 131.47, 129.79, 128.87, 49.71, 47.14, 12.61, 11.46. IR (KBr): 3055, 2978, 2932, 1485, 1444, 1414, 1067, 1009, 978, 915, 826, 744, 685, 505 cm–1. MS (EI): m/z = 225[M+], 152, 141, 116 (100), 109, 88. ESI-HRMS: m/z calcd for C11H15NS2Na [M + Na]+: 248.0538; found: 248.0543.
  • 17 Analytical Data of Two New Compounds 4-Isopropylphenyl Diethylcarbamodithioate (3ca) Colorless solid (123.5 mg, 98%); mp 80–81 °C. 1H NMR (400 MHz, CDCl3): δ = 7.39 (d, J = 8.0 Hz, 2 H), 7.28 (d, J = 8.0 Hz, 2 H), 4.01 (q, J = 8.0 Hz, 2 H), 3.83 (q, J = 8.0 Hz, 2 H), 2.99–2.90 (m, 1 H), 1.36 (t, J = 6.0 Hz, 3 H), 1.27 (d, J = 4.0 Hz, 9 H).13C NMR (100 MHz, CDCl3): δ = 196.02, 150.51, 136.73, 128.18, 126.99, 49.57, 46.97, 33.66, 23.54, 12.53, 11.37. IR (KBr): 2962, 2870, 1592, 1486, 1414, 1265, 1205, 1142, 1101, 976, 827, 548 cm–1. MS (EI): m/z = 267[M+], 135, 116 (100), 91, 88. ESI-HRMS: m/z calcd for C14H21NS2Na [M + Na]+: 290.1008; found: 290.1014.Phenyl Dipropylcarbamodithioate (3ac) Yellow oil (98.7 mg, 78%). 1H NMR (400 MHz, CDCl3): δ = 7.48–7.39 (m, 5 H), 3.90 (t, J = 6.0 Hz, 2 H), 3.72 (t, J = 8.0 Hz, 2 H), 1.88–1.74 (m, 4 H), 1.01 (t, J = 6.0 Hz, 3 H), 0.92 (t, J = 6.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 196.27, 136.93, 131.57, 129.69, 128.81, 56.92, 54.71, 20.81, 19.47, 11.09. IR (KBr): 2968, 2871, 1482, 1410, 1238, 1194, 1145, 986, 745, 686, 503 cm–1. MS (EI): m/z = 253 [M+], 153, 144 (100), 109, 102, 77, 60. ESI-HRMS: m/z calcd for C13H19NS2Na [M + Na]+: 276.0851; found: 276.0853.
    • 18a Collman JP, Zhong M. Org. Lett. 2000; 2: 1233
    • 18b Collman JP, Zhong M, Zhang C, Costanzo S. J. Org. Chem. 2001; 66: 7892
    • 18c Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
    • 19a Moon S.-Y, Nam J, Rathwell K, Kim W.-S. Org. Lett. 2014; 16: 338
    • 19b McGarry KA, Duenas AA, Clark TB. J. Org. Chem. 2015; 80: 7193
    • 19c King AE, Brunold TC, Stahl SS. J. Am. Chem. Soc. 2009; 131: 5044