Semin Musculoskelet Radiol 2013; 17(02): 145-155
DOI: 10.1055/s-0033-1343070
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Current Developments and Recent Advances in Musculoskeletal Tumor Imaging

Mark J. Kransdorf
1   Department of Radiology, Mayo Clinic, Phoenix, Arizona
,
Mellena D. Bridges
2   Department of Radiology, Mayo Clinic, Jacksonville, Florida
› Author Affiliations
Further Information

Publication History

Publication Date:
14 May 2013 (online)

Abstract

The radiologic evaluation of musculoskeletal masses has changed dramatically within recent years. This article addresses the current developments and recent advances in musculoskeletal tumor imaging. We include new MR imaging techniques to better define anatomy, especially in difficult to image areas such as the chest wall and abdomen; the use of chemical shift imaging to separate hematopoietic marrow from pathologic marrow infiltration; as well as the use of diffusion and spectroscopy to help distinguish benign and malignant processes. We also briefly address dual-energy computed tomography and positron emission tomography imaging. Our intention is not to provide a comprehensive review of imaging techniques but to offer an update and perspective on current technology.

 
  • References

  • 1 Madewell JE, Ragsdale BD, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part I: internal margins. Radiol Clin North Am 1981; 19 (4) 715-748
  • 2 Ragsdale BD, Madewell JE, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part II: periosteal reactions. Radiol Clin North Am 1981; 19 (4) 749-783
  • 3 Sweet DE, Madewell JE, Ragsdale BD. Radiologic and pathologic analysis of solitary bone lesions. Part III: matrix patterns. Radiol Clin North Am 1981; 19 (4) 785-814
  • 4 Gartner L, Pearce CJ, Saifuddin A. The role of the plain radiograph in the characterisation of soft tissue tumours. Skeletal Radiol 2009; 38 (6) 549-558
  • 5 Dalinka MK, Zlatkin MB, Chao P, Kricun ME, Kressel HY. The use of magnetic resonance imaging in the evaluation of bone and soft-tissue tumors. Radiol Clin North Am 1990; 28 (2) 461-470
  • 6 Pettersson H, Gillespy III T, Hamlin DJ , et al. Primary musculoskeletal tumors: examination with MR imaging compared with conventional modalities. Radiology 1987; 164 (1) 237-241
  • 7 Tehranzadeh J, Mnaymneh W, Ghavam C, Morillo G, Murphy BJ. Comparison of CT and MR imaging in musculoskeletal neoplasms. J Comput Assist Tomogr 1989; 13 (3) 466-472
  • 8 Aisen AM, Martel W, Braunstein EM, McMillin KI, Phillips WA, Kling TF. MRI and CT evaluation of primary bone and soft-tissue tumors. AJR Am J Roentgenol 1986; 146 (4) 749-756
  • 9 Hudson TM, Hamlin DJ, Enneking WF, Pettersson H. Magnetic resonance imaging of bone and soft tissue tumors: early experience in 31 patients compared with computed tomography. Skeletal Radiol 1985; 13 (2) 134-146
  • 10 Rubin DA, Kneeland JB. MR imaging of the musculoskeletal system: technical considerations for enhancing image quality and diagnostic yield. AJR Am J Roentgenol 1994; 163 (5) 1155-1163
  • 11 Bhosale P, Ma J, Choi H. Utility of the FIESTA pulse sequence in body oncologic imaging: review. AJR Am J Roentgenol 2009; 192 (6, Suppl) S83-S93 ; quiz S94–S97)
  • 12 Bydder GM. Technical advances in magnetic resonance imaging. Curr Opin Neurol Neurosurg 1992; 5 (6) 854-858
  • 13 Lee SS, Byun JH, Hong HS , et al. Image quality and focal lesion detection on T2-weighted MR imaging of the liver: comparison of two high-resolution free-breathing imaging techniques with two breath-hold imaging techniques. J Magn Reson Imaging 2007; 26 (2) 323-330
  • 14 Rumboldt Z, Marotti M. Magnetization transfer, HASTE, and FLAIR imaging. Magn Reson Imaging Clin N Am 2003; 11 (3) 471-492
  • 15 Outwater EK. Ultrafast MR imaging of the pelvis. Eur J Radiol 1999; 29 (3) 233-244
  • 16 Van Epps K, Regan F. MR cholangiopancreatography using HASTE sequences. Clin Radiol 1999; 54 (9) 588-594
  • 17 Fuchs F, Laub G, Othomo K. TrueFISP—technical considerations and cardiovascular applications. Eur J Radiol 2003; 46 (1) 28-32
  • 18 Puderbach M, Hintze C, Ley S, Eichinger M, Kauczor HU, Biederer J. MR imaging of the chest: a practical approach at 1.5T. Eur J Radiol 2007; 64 (3) 345-355
  • 19 Carr JC, Finn JP. MR imaging of the thoracic aorta. Magn Reson Imaging Clin N Am 2003; 11 (1) 135-148
  • 20 Koyama T, Tamai K, Togashi K. Current status of body MR imaging: fast MR imaging and diffusion-weighted imaging. Int J Clin Oncol 2006; 11 (4) 278-285
  • 21 Vandevenne JE, Vanhoenacker F, Mahachie John JM, Gelin G, Parizel PM. Fast MR arthrography using VIBE sequences to evaluate the rotator cuff. Skeletal Radiol 2009; 38 (7) 669-674
  • 22 Rofsky NM, Lee VS, Laub G , et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999; 212 (3) 876-884
  • 23 Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part I, techniques and normal age-related appearances. AJR Am J Roentgenol 2011; 197 (6) 1298-1308
  • 24 Bitar R, Leung G, Perng R , et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 2006; 26 (2) 513-537
  • 25 Bilbey JH, McLoughlin RF, Kurkjian PS , et al. MR imaging of adrenal masses: value of chemical-shift imaging for distinguishing adenomas from other tumors. AJR Am J Roentgenol 1995; 164 (3) 637-642
  • 26 Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 1997; 169 (5) 1439-1447
  • 27 Gerdes CM, Kijowski R. Reeder SB. IDEAL imaging of the musculoskeletal system: robust water–fat separation for uniform fat suppression, marrow evaluation, and cartilage imaging. AJR Am J Roentgenol 2007; 189: 284-291
  • 28 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007; 188 (6) 1622-1635
  • 29 Brown R. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos Mag 1828; 4: 161-173
  • 30 El Kady RM, Choudhary AK, Tappouni R. Accuracy of apparent diffusion coefficient value measurement on PACS workstation: a comparative analysis. AJR Am J Roentgenol 2011; 196 (3) W280-4
  • 31 Jiang ZX, Peng WJ, Li WT , et al. Effect of b value on monitoring therapeutic response by diffusion-weighted imaging. World J Gastroenterol 2008; 14 (38) 5893-5899
  • 32 Pereira RS, Harris AD, Sevick RJ, Frayne R. Effect of b value on contrast during diffusion-weighted magnetic resonance imaging assessment of acute ischemic stroke. J Magn Reson Imaging 2002; 15 (5) 591-596
  • 33 Genovese E, Canì A, Rizzo S, Angeretti MG, Leonardi A, Fugazzola C. Comparison between MRI with spin-echo echo-planar diffusion-weighted sequence (DWI) and histology in the diagnosis of soft-tissue tumours. Radiol Med (Torino) 2011; 116 (4) 644-656
  • 34 van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 2002; 15 (3) 302-307
  • 35 Einarsdóttir H, Karlsson M, Wejde J, Bauer HC. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 2004; 14 (6) 959-963
  • 36 Oka K, Yakushiji T, Sato H , et al. Ability of diffusion-weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors. J Magn Reson Imaging 2008; 28 (5) 1195-1200
  • 37 Oka K, Yakushiji T, Sato H , et al. Usefulness of diffusion-weighted imaging for differentiating between desmoid tumors and malignant soft tissue tumors. J Magn Reson Imaging 2011; 33 (1) 189-193
  • 38 Yakushiji T, Oka K, Sato H , et al. Characterization of chondroblastic osteosarcoma: gadolinium-enhanced versus diffusion-weighted MR imaging. J Magn Reson Imaging 2009; 29 (4) 895-900
  • 39 Shinkwin MA, Lenkinski RE, Daly JM , et al. Integrated magnetic resonance imaging and phosphorus spectroscopy of soft tissue tumors. Cancer 1991; 67 (7) 1849-1858
  • 40 Khoo MM, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 2011; 40 (6) 665-681
  • 41 Subhawong TK, Wang X, Durand DJ , et al. Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. AJR Am J Roentgenol 2012; 198 (1) 162-172
  • 42 Shinkwin MA, Lenkinski RE, Daly JM , et al. Integrated magnetic resonance imaging and phosphorus spectroscopy of soft tissue tumors. Cancer 1991; 67 (7) 1849-1858
  • 43 Sostman HD, Prescott DM, Dewhirst MW , et al. MR imaging and spectroscopy for prognostic evaluation in soft-tissue sarcomas. Radiology 1994; 190 (1) 269-275
  • 44 Fayad LM, Bluemke DA, McCarthy EF, Weber KL, Barker PB, Jacobs MA. Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization. J Magn Reson Imaging 2006; 23 (1) 23-28
  • 45 Fayad LM, Barker PB, Jacobs MA , et al. Characterization of musculoskeletal lesions on 3-T proton MR spectroscopy. AJR Am J Roentgenol 2007; 188 (6) 1513-1520
  • 46 Fayad LM, Salibi N, Wang X , et al. Quantification of muscle choline concentrations by proton MR spectroscopy at 3 T: technical feasibility. AJR Am J Roentgenol 2010; 194 (1) W73-9
  • 47 Fayad LM, Wang X, Salibi N , et al. A feasibility study of quantitative molecular characterization of musculoskeletal lesions by proton MR spectroscopy at 3 T. AJR Am J Roentgenol 2010; 195 (1) W69-75
  • 48 Hsieh TJ, Li CW, Chuang HY, Liu GC, Wang CK. Longitudinally monitoring chemotherapy effect of malignant musculoskeletal tumors with in vivo proton magnetic resonance spectroscopy: an initial experience. J Comput Assist Tomogr 2008; 32 (6) 987-994
  • 49 Mitchell DG, Cohen MS. Clinical MRI techniques. In Mitchell DG, Cohen MS, , eds. MRI Principles. 2nd ed. Philadelphia, PA: Saunders; 2004: 371-386
  • 50 Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res 2004; 64 (12) 4270-4276
  • 51 Wang CK, Li CW, Hsieh TJ, Chien SH, Liu GC, Tsai KB. Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology 2004; 232 (2) 599-605
  • 52 Karcaaltincaba M, Aktas A. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol 2011; 17 (3) 181-194
  • 53 Johnson TR, Weckbach S, Kellner H, Reiser MF, Becker CR. Clinical image: dual-energy computed tomographic molecular imaging of gout. Arthritis Rheum 2007; 56 (8) 2809
  • 54 Ning TC, Keenan RT. Unusual clinical presentations of gout. Curr Opin Rheumatol 2010; 22 (2) 181-187
  • 55 Zhou C, Zhao YE, Luo S , et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 2011; 18 (10) 1252-1257
  • 56 Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 2011; 21 (7) 1424-1429
  • 57 Kennedy RM, Peterson JJ, Kransdorf MJ, Bestic JM, Garner HW, McLean KW. Metal artifact reduction with dual-energy CT monoenergetic simulation. Skeletal Radiol 2012; 41: 750-751
  • 58 Aoki J, Watanabe H, Shinozaki T , et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001; 219 (3) 774-777
  • 59 Jadvar H, Gamie S, Ramanna L, Conti PS. Musculoskeletal system. Semin Nucl Med 2004; 34 (4) 254-261
  • 60 Israel-Mardirosian N, Adler LP. Positron emission tomography of soft tissue sarcomas. Curr Opin Oncol 2003; 15 (4) 327-330
  • 61 Lucas JD, O'Doherty MJ, Wong JC , et al. Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J Bone Joint Surg Br 1998; 80 (3) 441-447
  • 62 Lucas JD, O'Doherty MJ, Cronin BF , et al. Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br J Surg 1999; 86 (4) 550-556
  • 63 Bastiaannet E, Groen H, Jager PL , et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 2004; 30 (1) 83-101
  • 64 Hain SF, O'Doherty MJ, Bingham J, Chinyama C, Smith MA. Can FDG PET be used to successfully direct preoperative biopsy of soft tissue tumours?. Nucl Med Commun 2003; 24 (11) 1139-1143
  • 65 Peterson JJ. F-18 FDG-PET for detection of osseous metastatic disease and staging, restaging, and monitoring response to therapy of musculoskeletal tumors. Semin Musculoskelet Radiol 2007; 11 (3) 246-260
  • 66 Piperkova E, Mikhaeil M, Mouasavi A , et al. Studies for staging and evaluating treatment response in bone and soft tissue sarcomas: impact of PET and CT in PET/CT. Clin Nucl Med 2009; 34: 146-150
  • 67 Peterson JJ, Kransdorf MJ, O'Connor MI. Diagnosis of occult bone metastases: positron emission tomography. Clin Orthop Relat Res 2003; 415 (415, Suppl) S120-S128