Exp Clin Endocrinol Diabetes 2011; 119(8): 467-471
DOI: 10.1055/s-0031-1275289
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Increased Oxidative DNA Damage in Lean Normoglycemic Offspring of Type 2 Diabetic Patients

A. Zengi1 , G. Ercan2 , O. Caglayan3 , S. Tamsel4 , M. Karadeniz1 , I. Simsir1 , E. Harman1 , C. Kahraman1 , M. Orman5 , S. Cetinkalp1 , G. Ozgen1
  • 1Ege University Medical School, Endocrinology and Metabolism, Izmir, Turkey
  • 2Ege University Medical School, Biochemistry, Izmir, Turkey
  • 3Kırıkkale University Medical School, Biochemistry, Kırıkkale, Turkey
  • 4Ege University Medical School, Radiodiagnostic, Izmir, Turkey
  • 5Ege University Medical School, Biostatistic, Izmir, Turkey
Further Information

Publication History

received 15.12.2010 first decision 15.02.2011

accepted 07.03.2011

Publication Date:
06 April 2011 (online)

Abstract

Objective: Several studies have shown increased oxidative stress in patients with pre-diabetes and newly diagnosed Type 2 diabetes mellitus (T2DM). It has been proposed that oxidative stress initiates insulin resistance in genetically predisposed individuals. The aim of this study was to evaluate the markers of oxidative stress in the offspring of patients with T2DM.

Material and Methods: We examined 60 lean normoglycemic offspring of Type 2 diabetics, and 52 age, sex and body mass index matched subjects without family history of T2DM as controls. Anthropometric, biochemical and carotid intima media thickness (IMT) measurements and oral glucose tolerance test (OGTT) were performed. Erythrocyte superoxide dismutase and glutathione peroxidase activities, serum nitric oxide, plasma total sulfhydryl (tSH) groups, plasma total antioxidant status, plasma malondialdehyde and serum 8-hydroxydeoxy-guanosine (8-OHdG) levels were compared between 2 groups.

Results: 2 groups were similar for the measurements of anthropometric, blood pressure, lipids, fasting glucose, HOMA-IR and carotid IMT. Glucose levels during OGTT were significantly higher in the offspring of Type 2 diabetics than controls (p=0.035). The offspring of Type 2 diabetics showed a significant increase in serum 8-OHdG level (p=0.005) and plasma tSH groups (p=0.032) when compared to the controls. Significant differences were not obtained in other oxidative stress marker levels between 2 groups.

Conclusion: Main finding of our study was the presence of increased oxidative DNA damage in lean normoglycemic offspring of Type 2 diabetic patients. There is a need for further clinical studies in order to explain whether oxidative stress is present in genetically predisposed subjects and induces the insulin resistance.

References

  • 1 Roberts CK, Sindhu KK. Oxidative stres and metabolic syndrome.  Life Sci. 2009;  84 (21–22) 705-712
  • 2 Bayraktutan U. Free radicals, diabetes and endothelial dysfunction.  Diabetes Obes Metab. 2002;  4 (4) 224-238
  • 3 Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB. et al . Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells.  Cell Cycle. 2010;  9 (16) 3256-3276
  • 4 Fernandez-Checa JC, Fernandez A, Morales A. et al . Oxidative Stress and altered mitochondrial function in neurodegenerative diseases: lessons from Mouse models.  CNS Neurol Disord Drug Targets. 2010;  9 (4) 439-454
  • 5 Cardinale JP, Sriramula S, Pariaut R. et al . HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats.  Hypertension. 2010;  56 (3) 437-444
  • 6 Samuni Y, Cook JA, Choudhuri R. et al . Inhibition of adipogenesis by Tempol in 3T3-L1 cells.  Free Radic Biol Med. 2010;  49 (4) 667-673
  • 7 Karadeniz M, Erdo–an M, Tamsel S. et al . Oxidative stress markers in young patients with polycystic ovary syndrome, the relationship between insulin resistances.  Exp Clin Endocrinol Diabetes. 2008;  116 (4) 231-235
  • 8 Hamurcu Z, Bayram F, Kahriman G. et al . Micronucleus frequency in lymphocytes and 8-hydroxydeoxyguanosine level in plasma of women with polycystic ovary syndrome.  Gynecol Endocrinol. 2010;  26 (8) 590-595
  • 9 Bast A, Wolf G, Oberbäumer I. et al . Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cell.  Diabetologia. 2002;  45 (6) 867-876
  • 10 Van Dyke K, Jabbour N, Hoeldtke R. et al . Oxidative/nitrosative stresses trigger I diabetes: preventable in streptozotocin rats and detectable in human disease.  Ann N Y Acad Sci. 2010;  1203 138-145
  • 11 Fridlyand LE, Philipson LH. Reactive species and early manifestation of insulin resistance in type 2 diabetes.  Diabetes Obes Metab. 2006;  8 (2) 136-145
  • 12 Arif M, Islam MR, Hassan F. et al . DNA damage and plasma antioxidant indices in Bangladeshi type 2 diabetic patients.  Diabetes Metab. 2010;  36 (1) 51-57
  • 13 Olefsky JM, Nolan JJ. Insulin resistance and non-insulin-dependent diabetes mellitus: cellular and molecular mechanisms.  Am J Clin Nutr. 1995;  61 (4 suppl) 980s-986s
  • 14 Szabo C. Role of nitrosative stress in pathogenesis of diabetic vascular dysfunction.  Br J Pharmacol. 2009;  156 (5) 713-727
  • 15 Tiwari AK, Prasad P,  BKT. et al . Oxidative stress pathway genes and chronic renal insufficiency in Asian Indians with Type 2 diabetes.  J Diabetes Complications. 2009;  23 (2) 102-111
  • 16 Calabrese V, Mancuso C, Sapienza M. et al . Oxidative stress and cellular stress response in diabetic nephpathy.  Cell Stress Chaperones. 2007;  12 (4) 299-306
  • 17 Pan HZ, Chang D, Feng LG. et al . Oxidative damage to DNA and its relationship with diabetic complications.  Biomed Environ Sci. 2007;  20 (2) 160-163
  • 18 Kofler B, Mueller EE, Eder W. et al . Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study.  BMC Med Genet. 2009;  10 35
  • 19 Zochodne DW. Diabetes mellitus and peripheral nervous system:manifestations and mechanisms.  Muscle Nevre. 2007;  36 (2) 144-166
  • 20 Ceriello A, Inhat MA, Thorpe JE. Clinical review 2: The “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications?.  J Clin Endocrinol Metab. 2009;  94 (2) 410-415
  • 21 Kaneto H, Katakami N, Matsuhisa M. et al . Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.  Mediators Inflamm. 2010;  2010 453892
  • 22 Meigs JB, Larson MG, Fox CS. et al . Association of oxidative stress, insulin resistance, and diabetes risk phenotypes:the Framingham Offspring Study.  Diabetes Care. 2007;  30 (10) 2529-2535
  • 23 Lim SC, Tan HH, Goh SK. et al . Oxidative burden in prediabetic and diabetic individuals: evidence from plasma coenzyme Q(10).  Diabet Med. 2006;  23 (12) 1344-1349
  • 24 Song F, Jia W, Yao Y. et al . Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type 2 diabetes.  Clin Sci(Lond). 2007;  112 (12) 599-606
  • 25 Su Y, Liu XM, Sun YM. et al . The relationship between endothelial dysfunction and oxidative stress in diabetes and prediabetes.  Int J Clin Pract. 2008;  62 (6) 877-882
  • 26 Osorio JM, Ferreyra C, Pérez A. et al . Prediabetic states, subclinical atheromatosis, and oxidative stress in renal transplant patients.  Transplant Proc. 2009;  41 (6) 2148-2150
  • 27 Zheng F, Lu W, Jia C. et al . Relationships between glucose excursion and the activation of oxidative stress in patients with newly diagnosed type 2 diabetes or impaired glucose regulation.  Endocrine. 2010;  37 (1) 201-208
  • 28 Grant RW, Moore AF, Florez JC. Genetic architecture of type 2 diabetes: recent progress and clinical implications.  Diabetes Care. 2009;  32 (6) 1107-1114
  • 29 Samocha-Bonet D, Heilbronn LK, Lichtenberg D. et al . Does skeletal muscle oxidative stress initiate insulin resistance in genetically predisposed individuals?.  Trends Endocrinol Metab. 2010;  21 (2) 83-88
  • 30 Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis.  Arterioscler Thoromb Vasc Biol. 2004;  24 (5) 816-823
  • 31 Daniel M, Marison SA, Sheps SB. et al . Variation by body mass index and age in waist-to-hip ratio associations with glycemic status in an aboriginal population at risk for type 2 diabetes in British Columbia, Canada.  Am J Clin Nutr. 1999;  69 (3) 455-460
  • 32 American Diabetes Association: . Clinical Practice Recommendations.  Diabetes Care. 2005;  28 (suppl-1)S) 1-79
  • 33 Alper G, Irer S, Duman S. et al . Effect of l-deprenyl and gliclazide on oxidant stress/antioxidant status and dna damage in a diabetic rat model.  Endocr Res. 2005;  31 (3) 199-212
  • 34 Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite.  Nitric Oxide. 2001;  5 62-71
  • 35 Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent.  Anal Biochem. 1968;  25 192-205
  • 36 Erel O. A novel automated measurement method for antioxidant capacity using a new generation, more stable ABTS radical caution.  Clin Biochem. 2004;  37 277-285
  • 37 Armstrong D, al-Awadi F. Lipid peroxidation and retinopathy in streptozotocin-induced diabetes.  Free Radic Biol Med. 1991;  11 433-436
  • 38 Yagi K. A simple flourometric assay for lipoperxide in blood plasma.  Biochem Med. 1976;  15 212-216
  • 39 Robertson RP, Zhang HJ, Pyzdrowski KL. et al . Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations.  J Clin Invest. 1992;  90 (2) 320-325
  • 40 Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and beta-cell dysfunction.  Pflugers Arch. 2010;  460 (4) 703-718
  • 41 Evans JL, Goldfine ID, Maddux BA. et al . Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?.  Diabetes. 2003;  52 (1) 1-8
  • 42 Al-Aubaidy HA, Jelinek HF. 8-Hydroxy-2-deoxy-guanosine identifies oxidative DNA damage in a rural prediabetes cohort.  Redox Rep. 2010;  15 (4) 155-160
  • 43 Archuleta TL, Lemieux AM, Saengsirisuwan V. et al . Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle:role of p38 MAPK.  Free Radic Biol Med. 2009;  47 (10) 1486-1493
  • 44 Bloch-Damti A, Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress.  Antioxidant Redox Signaling. 2005;  7 1553-1567
  • 45 Maiese K, Morhan SD, Chong ZZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus.  Curr Neurovasc Res. 2007;  4 (1) 63-71
  • 46 Befroy DE, Petersen KF, Dufour S. et al . Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients.  Diabetes. 2007;  56 (5) 1376-1381
  • 47 Straczkowski M, Kowalska I, Stepieñ A. et al . Insulin resistance in the first-degree relatives of persons with type 2 diabetes.  Med Sci Monit. 2003;  9 (5) CR186-CR190
  • 48 Anderwald C, Anderwald-Stadler M, Promintzer M. et al . The Clamp-Like Index: a novel and highly sensitive insulin sensitivity index to calculate hyperinsulinemic clamp glucose infusion rates oral glucose tolerance tests in nondiabetic subjects.  Diabetes Care. 2007;  30 (9) 2374-2380

Correspondence

Dr. A. Zengi

Ege University Medical School

Endocrinology and Metabolism

Ege University Hospital

35100 Izmir

Turkey

Phone: +90/232/390 35 24

Fax: +90/232/373 77 01

Email: aliyezengi@yahoo.com

    >