Synlett 2011(15): 2253-2255  
DOI: 10.1055/s-0030-1261193
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Carbonylation of Aryl and Heteroaryl Bromides under Atmospheric Pressure of CO

Weizhun Yanga,b, Wei Han*a, Weidong Zhangc, Lei Shan*c, Jiansong Sun*b
a School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
b State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
e-Mail: jssun@sioc.ac.cn;
c Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. of China
Further Information

Publication History

Received 30 April 2011
Publication Date:
24 August 2011 (online)

Abstract

In the presence of Et3N and n-BuOH, efficient alkoxycarbonylation of (hetero)aromatic bromides was achieved under atmospheric pressure of carbon monoxide with in situ generated palladium/rac-BINAP as catalyst.

    References and Notes

  • 1a The Art of Drug Synthesis   Johnson DS. Li JJ. John Wiley and Sons; Hoboken / NJ: 2007. 
  • 1b Zapf A. Beller M. Top. Catal.  2002,  19:  101 
  • 1c Stetter J. Lieb F. Angew. Chem. Int. Ed.  2000,  39:  1724 
  • 2a Schoenberg A. Bartoletti I. Heck RF. J. Org. Chem.  1974,  39:  3318 
  • 2b Schoenberg A. Heck RF. J. Org. Chem.  1974,  39:  3327 
  • 2c Schoenberg A. Heck RF.
    J. Am. Chem. Soc.  1974,  96:  7761 
  • 3a Handbook of Organopalladium Chemistry for Organic Synthesis   Vol. 2:  Negishi E. de Meijere A. Wiley; New York: 2002.  p.2309 
  • 3b Skoda-Foldes R. Kollar L. Curr. Org. Chem.  2002,  6:  1097 
  • For review, see:
  • 4a Brennführer A. Neumann H. Beller M. Angew. Chem. Int. Ed.  2009,  48:  4114 
  • 4b Barnard CF. Organometallics  2008,  27:  5402 
  • 5a Neumann H. Brennführer A. Groß P. Riermeier T. Almena J. Beller M. Adv. Synth. Catal.  2006,  348:  1255 
  • 5b McNulty J. Nair J. Sliwinski M. Robertson AJ. Tetrahedron Lett.  2009,  50:  2342 
  • 5c Wu X.-F. Neumann H. Beller M. ChemCatChem  2010,  2:  509 
  • 6 Mägerlein W. Indolese AF. Beller M. Angew. Chem. Int. Ed.  2001,  40:  2856 
  • 7 Liu J. Liang B. Shu D. Hu Y. Yang Z. Lei A. Tetrahedron  2008,  64:  9581 
  • 8a Watson DA. Fan X. Buchwald SL. J. Org. Chem.  2008,  73:  7096 
  • 8b Martinelli JR. Watson DA. Freckmann DMM. Barder TE. Buchwald SL. J. Org. Chem.  2008,  73:  7102 
  • 9a Yehoshua B.-D. Portnoy M. Milstein D. J. Am. Chem. Soc.  1989,  111:  8742 
  • 9b Beller M. Magerlein W. Indolese AF. Fischer C. Synthesis  2001,  1098 
  • 10 Albaneze-Walker J. Bazaral C. Leavey B. Dormer PG. Murry JA. Org. Lett.  2004,  6:  2097 
  • 11 Tonner SP. Wainwright MS. Trimm DL. J. Chem. Eng. Data  1983,  28:  59 
  • 12 Magerlein W. Indolese AF. Beller M. J. Organomet. Chem.  2002,  641:  30 
  • 13 Cai M.-Z. Song C.-S. Huang X. J. Chem. Soc., Perkin Trans. 1  1997,  2273 
  • 14a Hashmi ASK. Lothschutz C. Ackermann M. Doepp R. Anantharaman S. Marchetti B. Bertagnolli H. Rominger F. Chem. Eur. J.  2010,  16:  8012 
  • 14b Liu Q. Li G. He J. Li P. Lei A. Angew. Chem. Int. Ed.  2010,  49:  3371 
15

Representative Procedure A stirred solution of 7-bromoisoquinoline (62 mg, 0.3 mmol) and Et3N (0.07 mL, 0.45 mmol) in n-BuOH (1 mL) was treated with PdCl2 (1 mg, 2 mol%) and rac-BINAP (7 mg, 4 mol%). The reaction mixture was degassed and refilled with CO (balloon) for three times, and then stirred for 12 h at 120 ˚C. Solvent was removed under reduced pressure, and the resulting residue was purified by column chromatography to provide butyl isoquinoline-7-carboxylate in 96% yield (66 mg).