Semin Thromb Hemost 2009; 35(4): 439-446
DOI: 10.1055/s-0029-1225766
© Thieme Medical Publishers

Vitamin K–Dependent Coagulation Factors Deficiency

Benjamin Brenner1 , Amir A. Kuperman1 , Matthias Watzka2 , Johannes Oldenburg2
  • 1Thrombosis and Hemostasis Unit, Institute of Hematology, Rambam Medical Center, and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
  • 2Institute for Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
Further Information

Publication History

Publication Date:
13 July 2009 (online)

ABSTRACT

All vitamin K–dependent coagulation factors require normal function of γ-glutamyl carboxylase and vitamin K epoxide reductase enzyme complex (VKORC1). Heritable dysfunction of γ-glutamyl carboxylase or of the VKORC1 complex results in the secretion of poorly carboxylated vitamin K–dependent proteins that play a role in coagulation. The following review will summarize the clinical manifestations of vitamin K–dependent coagulation factors deficiency I and II and will provide a detailed explanation about the gene and protein structure, the function of the protein, and an analysis of the previously reported mutations. Laboratory assays used for diagnosis will be discussed, and treatment for various clinical settings will be recommended.

REFERENCES

  • 1 Furie B, Bouchard B A, Furie B C. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid.  Blood. 1999;  93 1798-1808
  • 2 McMillan C W, Roberts H R. Congenital combined deficiency of coagulation factors II, VII, IX and X. Report of a case.  N Engl J Med. 1966;  274 1313-1315
  • 3 Fischer M, Zweymuller E. Kongenitaler Mangel der faktoren II, VII und X.  Zeitschrift fuer kinderheikunde. 1966;  95 309-323
  • 4 Johnson C A, Chung K S, McGrath K M, Bean P E, Roberts H R. Characterization of a variant prothrombin in a patient congenitally deficient in factors II, VII, IX and X.  Br J Haematol. 1980;  44 461-469
  • 5 Mickleson K N, Whyte G. Severe deficiency of vitamin K dependent coagulation factors in an infant.  N Z Med J. 1979;  90 291-292
  • 6 Thomas A, Stirling D. Four factor deficiency.  Blood Coagul Fibrinolysis. 2003;  14(Suppl 1) S55-S57
  • 7 Puetz J, Knutsen A, Bouhasin J. Congenital deficiency of vitamin K-dependent coagulation factors associated with central nervous system anomalies.  Thromb Haemost. 2004;  91 819-821
  • 8 Goldsmith Jr G H, Pence R E, Ratnoff O D, Adelstein D J, Furie B. Studies on a family with combined functional deficiencies of vitamin K-dependent coagulation factors.  J Clin Invest. 1982;  69 1253-1260
  • 9 Vicente V, Maia R, Alberca I, Tamagnini G PT, Lopez Borrasca A. Congenital deficiency of vitamin K-dependent coagulation factors and protein C.  Thromb Haemost. 1984;  51 343-346
  • 10 Ekelund H, Lindeberg L, Wranne L. Combined deficiency of coagulation factors II, VII, IX, and X: a case of probable congenital origin.  Pediatr Hematol Oncol. 1986;  3 187-193
  • 11 Pauli R M, Lian J B, Mosher D F, Suttie J W. Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives.  Am J Hum Genet. 1987;  41 566-583
  • 12 Leonar C O. Vitamin K responsive bleeding disorder: a genocopy of the warfarin embryopathy.  Proceeding of the Greenwood Genetic Center. 1988;  7 165-166
  • 13 Pechlaner C, Vogel W, Erhart R, Pümpel E, Kunz F. A new case of combined deficiency of vitamin K dependent coagulation factors.  Thromb Haemost. 1992;  68 617
  • 14 Ghosh K, Shetty S, Mohanty D. Inherited deficiency of multiple vitamin K-dependent coagulation factors and coagulation inhibitors presenting as hemorrhagic diathesis, mental retardation, and growth retardation.  Am J Hematol. 1996;  52 67
  • 15 Boneh A, Bar-Ziv J. Hereditary deficiency of vitamin K-dependent coagulation factors with skeletal abnormalities.  Am J Med Genet. 1996;  65 241-243
  • 16 Brenner B, Sánchez-Vega B, Wu S M, Lanir N, Stafford D W, Solera J. A missense mutation in gamma-glutamyl carboxylase gene causes combined deficiency of all vitamin K-dependent blood coagulation factors.  Blood. 1998;  92 4554-4559
  • 17 Spronk H M, Farah R A, Buchanan G R, Vermeer C, Soute B A. Novel mutation in the gamma-glutamyl carboxylase gene resulting in congenital combined deficiency of all vitamin K-dependent blood coagulation factors.  Blood. 2000;  96 3650-3652
  • 18 Oldenburg J, von Brederlow B, Fregin A et al.. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase-complex.  Thromb Haemost. 2000;  84 937-941
  • 19 Rost S, Fregin A, Koch D, Compes M, Müller C R, Oldenburg J. Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors.  Br J Haematol. 2004;  126 546-549
  • 20 Bhattacharyya J, Dutta P, Mishra P et al.. Congenital vitamin K-dependent coagulation factor deficiency: a case report.  Blood Coagul Fibrinolysis. 2005;  16 525-527
  • 21 Darghouth D, Hallgren K W, Shtofman R L et al.. Compound heterozygosity of novel missense mutations in the gamma-glutamyl-carboxylase gene causes hereditary combined vitamin K-dependent coagulation factor deficiency.  Blood. 2006;  108 1925-1931
  • 22 Marchetti G, Caruso P, Lunghi B et al.. Vitamin K-induced modification of coagulation phenotype in VKORC1 homozygous deficiency.  J Thromb Haemost. 2008;  6 797-803
  • 23 Kuo W L, Stafford D W, Cruces J, Gray J, Solera J. Chromosomal localization of the gamma-glutamyl carboxylase gene at 2p12.  Genomics. 1995;  25 746-748
  • 24 Fregin A, Rost S, Wolz W, Krebsova A, Muller C R, Oldenburg J. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16.  Blood. 2002;  100 3229-3232
  • 25 Rost S, Fregin A, Ivaskevicius V et al.. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.  Nature. 2004;  427 537-541
  • 26 Soute B AM, Ulrich M MW, Watson A DJ, Maddison J E, Ebberink R H, Vermeer C. Congenital deficiency of all vitamin K-dependent blood coagulation factors due to a defective vitamin K-dependent carboxylase in Devon Rex cats.  Thromb Haemost. 1992;  68 521-525
  • 27 Rieder M J, Reiner A P, Gage B F et al.. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.  N Engl J Med. 2005;  352 2285-2293
  • 28 Yuan H Y, Chen J J, Lee M T et al.. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity.  Hum Mol Genet. 2005;  14 1745-1751
  • 29 Schwarz U I, Ritchie M D, Bradford Y et al.. Genetic determinants of response to warfarin during initial anticoagulation.  N Engl J Med. 2008;  358 999-1008
  • 30 Zhu A, Sun H, Raymond Jr R M et al.. Fatal hemorrhage in mice lacking γ-glutamyl carboxylase.  Blood. 2007;  109 5270-5275
  • 31 Brenner B, Tavori S, Zivelin A et al.. Hereditary deficiency of all vitamin K-dependent procoagulants and anticoagulants.  Br J Haematol. 1990;  75 537-542
  • 32 Menger H, Lin A E, Toriello H V, Bernert G, Spranger J W. Vitamin K deficiency embryopathy: a phenocopy of the warfarin embryopathy due to a disorder of embryonic vitamin K metabolism.  Am J Med Genet. 1997;  72 129-134
  • 33 Vanakker O M, Martin L, Gheduzzi D et al.. Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity.  J Invest Dermatol. 2007;  127 581-587
  • 34 Wu S M, Cheung W F, Frazier D, Stafford D W. Cloning and expression of the cDNA for human gamma-glutamyl carboxylase.  Science. 1991;  254 1634-1636
  • 35 Wu S M, Stafford D W, Frazier L D et al.. Genomic sequence and transcription start site for the human gamma-glutamyl carboxylase.  Blood. 1997;  89 4058-4062
  • 36 Tie J, Wu S M, Jin D, Nicchitta C V, Stafford D W. A topological study of the human gamma-glutamyl carboxylase.  Blood. 2000;  96 973-978
  • 37 Schmidt-Krey I, Haase W, Mutucumarana V, Stafford D W, Kühlbrandt W. Two-dimensional crystallization of human vitamin K-dependent γ-glutamyl carboxylase.  J Struct Biol. 2007;  157 437-442
  • 38 Pan L C, Price P A. The propeptide of rat bone gamma-carboxyglutamic acid protein shares homology with other vitamin K-dependent protein precursors.  Proc Natl Acad Sci U S A. 1985;  82 6109-6113
  • 39 Knobloch J E, Suttie J W. Vitamin K-dependent carboxylase. Control of enzyme activity by the “propeptide” region of factor X.  J Biol Chem. 1987;  262 15334-15337
  • 40 Price P A, Williamson M K. Substrate recognition by the vitamin K-dependent gamma-glutamyl carboxylase: identification of a sequence homology between the carboxylase and the carboxylase recognition site in the substrate.  Protein Sci. 1993;  2 1987-1988
  • 41 Lin P J, Jin D Y, Tie J K, Presnell S R, Straight D L, Stafford D W. The putative vitamin K-dependent gamma-glutamyl carboxylase internal propeptide appears to be the propeptide binding site.  J Biol Chem. 2002;  277 28584-28591
  • 42 Mutucumarana V P, Acher F, Straight D L, Jin D Y, Stafford D W. A conserved region of human vitamin K-dependent carboxylase between residues 393 and 404 is important for its interaction with the glutamate substrate.  J Biol Chem. 2003;  278 46488-46493
  • 43 Soute B A, Groenen-van Dooren M M, Holmgren A, Lundström J, Vermeer C. Stimulation of the dithiol-dependent reductases in the vitamin K cycle by the thioredoxin system. Strong synergistic effects with protein disulphide-isomerase.  Biochem J. 1992;  281(Pt 1) 255-259
  • 44 Sugiura I, Furie B, Walsh C T, Furie B C. Propeptide and glutamate-containing substrates bound to the vitamin K-dependent carboxylase convert its vitamin K epoxidase function from an inactive to an active state.  Proc Natl Acad Sci U S A. 1997;  94 9069-9074
  • 45 Bell R G, Matschiner J T. Vitamin K activity of phylloquinone oxide.  Arch Biochem Biophys. 1970;  141 473-476
  • 46 Kohn M H, Pelz H J. Genomic assignment of the warfarin resistance locus, Rw, in the rat.  Mamm Genome. 1999;  10 696-698
  • 47 Wallace M E, MacSwiney F J. A major gene controlling warfarin-resistance in the house mouse.  J Hyg (Lond). 1976;  76 173-181
  • 48 Li T, Chang C Y, Jin D Y, Lin P J, Khvorova A, Stafford D W. Identification of the gene for vitamin K epoxide reductase.  Nature. 2004;  427 541-544
  • 49 Tie J K, Nicchitta C, von Heijne G, Stafford D W. Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation.  J Biol Chem. 2005;  280 16410-16416
  • 50 Rost S, Fregin A, Hünerberg M, Bevans C G, Müller C R, Oldenburg J. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin.  Thromb Haemost. 2005;  94 780-786
  • 51 Wajih N, Sane D C, Hutson S M, Wallin R. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.  J Biol Chem. 2005;  280 10540-10547
  • 52 Preusch P C. Is thioredoxin the physiological vitamin K epoxide reducing agent?.  FEBS Lett. 1992;  305 257-259
  • 53 Wajih N, Hutson S M, Wallin R. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.  J Biol Chem. 2007;  282 2626-2635
  • 54 Myszka D G, Swenson R P. Synthesis of the photoaffinity probe 3-(p-azidobenzyl)-4-hydroxycoumarin and identification of the dicoumarol binding site in rat liver NAD(P)H:quinone reductase (EC 1.6.99.2).  J Biol Chem. 1991;  266 4789-4797
  • 55 Ma Q, Cui K, Xiao F, Lu A Y, Yang C S. Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis.  J Biol Chem. 1992;  267 22298-22304
  • 56 Jin D Y, Tie J K, Stafford D W. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines.  Biochemistry. 2007;  46 7279-7283
  • 57 Chu P H, Huang T Y, Williams J, Stafford D W. Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2.  Proc Natl Acad Sci U S A. 2006;  103 19308-19313
  • 58 Mousallem M, Spronk H M, Sacy R, Hakime N, Soute B A. Congenital combined deficiencies of all vitamin K-dependent coagulation factors.  Thromb Haemost. 2001;  86 1334-1336
  • 59 McMahon M J, James A H. Combined deficiency of factors II, VII, IX, and X (Borgschulte-Grigsby deficiency) in pregnancy.  Obstet Gynecol. 2001;  97(5 Pt 2) 808-809
  • 60 Bolton-Maggs P H, Perry D J, Chalmers E A et al.. The rare coagulation disorders—review with guidelines for management from the United Kingdom Haemophilia Centre Doctors' Organisation.  Haemophilia. 2004;  10 593-628
  • 61 Köhler M. Thrombogenicity of prothrombin complex concentrates.  Thromb Res. 1999;  95(4, Suppl 1) S13-S17

Prof. Benjamin BrennerM.D. 

Thrombosis and Hemostasis Unit, Institute of Hematology, Rambam Medical Center; and Bruce Rappaport Faculty of Medicine

Technion, Haifa, Israel

Email: b_brenner@rambam.health.gov.il

    >