Synlett 2009(13): 2143-2145  
DOI: 10.1055/s-0029-1217545
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Copper-Catalyzed Aerobic Oxidative Rearrangement of Tertiary Allylic Alcohols Mediated by TEMPO

Jean-Michel Vatèle
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Université Lyon 1, Laboratoire de Chimie Organique 1, Bât CPE, 69622 Villeurbanne Cedex, France
Fax: +33(4)72431214; e-Mail: vatele@univ-lyon1.fr;
Further Information

Publication History

Received 26 March 2009
Publication Date:
03 July 2009 (online)

Abstract

A mild method for the oxidative rearrangement of tertiary allylic alcohols to β-substituted enones using a TEMPO/CuCl2 system, in the presence of molecular sieves, is described. Depending on the substrate, CuCl2 was used in either a catalytic amount under an oxygen atmosphere or stoichiometrically.

    References and Notes

  • 1a Babler JH. Coghlan MJ. Synth. Commun.  1976,  469 
  • 1b Dauben WG. Michno DM. J. Org. Chem.  1977,  42:  682 
  • 1c Sundararaman P. Herz W. J. Org. Chem.  1977,  42:  813 
  • For examples of the oxidative rearrangement with chromium(VI) reagents on diversely functionalized tertiary allylic alcohols, see:
  • 2a Brown PS. McElroy AB. Warren S. Tetrahedron Lett.  1985,  26:  249 
  • 2b Liotta D. Brown D. Hoekstra W. Monahan R. Tetrahedron Lett.  1987,  28:  1069 
  • 2c Majetich G. Condon S. Hull K. Ahmad S. Tetrahedron Lett.  1989,  30:  1033 
  • 2d Öhler E. Zbiral E. Synthesis  1991,  357 
  • 2e Nangia A. Rao B. Tetrahedron Lett.  1993,  34:  2681 
  • 2f Luzzio FA. Moore WJ. J. Org. Chem.  1993,  58:  2966 
  • 2g Surya Prakash GK. Tongco EC. Mathew T. Vankar YD. Olah GA. J. Fluorine Chem.  2000,  101:  199 
  • 3a Shibuya M. Ito S. Takahashi M. Iwabuchi Y. Org. Lett.  2004,  6:  4303 
  • 3b Tello-Aburto R. Ochoa-Teran A. Olivo HF. Tetrahedron Lett.  2006,  47:  5915 
  • 4a Shibuya M. Tomizawa M. Iwabuchi Y. J. Org. Chem.  2008,  73:  4750 
  • 4b Shibuya M. Tomizawa M. Iwabuchi Y. Org. Lett.  2008,  10:  4715 
  • 5a Vatèle J.-M. Tetrahedron Lett.  2006,  47:  715 
  • 5b Vatèle J.-M. Synlett  2006,  2055 
  • 6 Vatèle J.-M. Synlett  2008,  1785 
  • 7a Semmelhack MF. Schmid CR. Cortés DA. Chou CS. J. Am. Chem. Soc.  1984,  106:  3374 
  • 7b Miyazawa T. Endo T. J. Mol. Catal.  1985,  32:  357 
  • 7c Tsubokawa N. Kimoto T. Endo T. J. Mol. Catal. A: Chem.  1995,  101:  45 
  • 7d Ansari IA. Gree R. Org. Lett.  2002,  4:  1507 
  • 7e Ragagnin G. Betzemeier B. Qiuci S. Knochel P. Tetrahedron  2002,  58:  3985 
  • 7f Gamez P. Arends IWCE. Sheldon RA. Reedijk J. Adv. Synth. Catal.  2004,  346:  805 
  • 7g Velusamy S. Srinivasan A. Punniyamurthy T. Tetrahedron Lett.  2006,  47:  923 
  • 7h Striegler S. Tetrahedron  2006,  62:  9109 
  • 7i Jiang N. Ragauskas AJ. J. Org. Chem.  2006,  71:  7087 
  • 7j Figiel PJ. Leskala M. Repo T. Adv. Synth. Catal.  2007,  349:  1173 
  • 7k Mannam S. Alamsetti SK. Sekar J. Adv. Synth. Catal.  2007,  349:  2253 
  • 7l Lin L. Liuyan J. Yunyang W. Catal. Commun.  2008,  9:  1379 
  • 8 Gamez P. Simons C. Steensma R. Driessen WL. Challa G. Reedijk J. Eur. Polym. J.  2001,  37:  1293 
  • For examples of the use of molecular sieves as acid scavenger, see:
  • 9a Vatèle J.-M. Tetrahedron  2002,  58:  5689 
  • 9b Urata H. Hu N.-X. Maekawa H. Fuchikami T. Tetrahedron Lett.  1991,  32:  4733 
  • 9c Banks AR. Fibiger RF. Jones T. J. Org. Chem.  1977,  42:  3965 
  • For kinetic studies on TEMPO-mediated oxidation, see:
  • 11a de Nooy AEJ. Besemer AC. Van bekkum H. Tetrahedron  1995,  51:  8023 
  • 11b Shibuya M. Tomizawa M. Suzuki I. Iwabuchi Y. J. Am. Chem. Soc.  2006,  128:  8412 
  • 12 For examples of the formation of fragmentation products, see: Alvarez FM. Van der Meer RK. Lofgren CS. Tetrahedron  1987,  43:  2897 ; see also refs. 1a, 1b and 2b
10

Typical Procedure for Copper-Catalyzed Oxidative Rearrangement of Tertiary Allylic Alcohols Mediated by TEMPO. Method A: 3-Butylcyclohex-2-en-1-one (entry 1): To a stirred solution of 1-butylcyclohex-2-en-1-ol (0.1 g, 0.65 mmol) in acetonitrile (2.5 mL) were successively added TEMPO (0.01 g, 0.1 equiv), 4 Å molecular sieves (0.1 g) and CuCl2˙2H2O (0.056 g, 0.5 equiv). The brown suspension was stirred under oxygen (balloon) for 7 h, then the suspension was diluted with Et2O, washed twice with water, dried (Na2SO4) and evaporated. The residue was purified by chromatography on silica gel (PE-EtOAc, 5:1) to give the enone as a liquid. ¹H NMR (CDCl3, 200 MHz): δ = 0.88 (t, J = 7.1 Hz, 1 H, Me), 1.2-1.53 (m, 4 H, 2 × CH2), 1.95 (sept, J = 6.2 Hz, 2 H), 2.18 (t, J = 7.7 Hz, 2 H, CH2), 2.29 (t, 4 H, 2 × CH2), 5.84 (s, 1 H). ¹³C NMR (50 MHz): δ = 13.8, 22.3, 22.8, 29.1, 29.7, 37.4, 37.8, 125.6, 166.8, 199.9. HRMS: m/z calcd for C10H16O: 152.1201; found: 152.1190. Method B: 2-(tert-Butyldiphenylsilyloxymethyl)-3-methylcyclohex-2-en-1-one (entry 7): To a stirred solution of 2-(tert-butyl-diphenylsilyloxymethyl)-1-methylcyclohex-2-en-1-ol (0.1 g, 0.26 mmol) in acetonitrile (2 mL) were successively added TEMPO (0.004 g, 0.1 equiv), molecular sieves (0.05 g) and CuCl2˙2H2O (0.089 g, 2 equiv). After stirring the reaction mixture for 10 h, work-up as described in method A gave an oil, which was purified by flash chromatography (PE-Et2O, 6:1) to afford an oil that crystallized on standing. Mp 61-63 ˚C. IR (neat): 3049, 1667, 1634 cm. ¹H NMR (300 MHz): δ = 1.04 (s, 9 H, Me), 1.91 (quint, J = 6.2 Hz, 2 H), 1.99 (s, 3 H, Me), 2.32-2.40 (m, 4 H, 2 × CH2), 4.47 (s, 2 H, CH2), 7.4 (m, 6 H), 7.7 (m, 4 H). ¹³C NMR (75 MHz): δ = 19.5, 21.5, 22.1, 27.0 (3 × Me), 33.1, 37.6, 56.3, 127.6 (4 × CH), 129.6 (2 × CH), 134 (2 × CH), 134.5, 135.8 (4 × CH), 160.5, 197.6. HRMS: m/z [M+H]+ calcd for C24H31O2Si: 379.2093; found: 379.2093.