Synthesis 2023; 55(20): 3303-3314
DOI: 10.1055/a-2116-5206
paper

Synthesis of Quinoline and Quinolin-2(1H)-one Derivatives via Nickel Boride Promoted Reductive Cyclization

Rumpa Sarkar
a   Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, PO Botanic Garden, Howrah 711103 (WB), India
,
Surya Kanta Samanta
a   Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, PO Botanic Garden, Howrah 711103 (WB), India
,
Anila M. Menon
b   Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
,
Deepak Chopra
b   Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
,
Debabani Ganguly
c   Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, India
,
a   Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, PO Botanic Garden, Howrah 711103 (WB), India
› Author Affiliations
Financial support from the Science and Engineering Research Board (SERB), New Delhi, India (Grant No. CRG/2021/002889) is most gratefully acknowledged. R.S. gratefully thanks the Council of Scientific and Industrial Research, India (CSIR New Delhi) for financial support in the form of a CSIR-JRF. A.M.M. thanks the Indian Institute of Science­ Education and Research Bhopal (IISER Bhopal) for a senior research fellowship.


Abstract

A mild and efficient approach for the synthesis of diversely substituted quinoline and quinolin-2-one derivatives is disclosed. In situ generated nickel boride proved to be an effective promoter of the reductive cyclization reaction. Broad substrate scope, mild reaction conditions, consistent yield, and a wide range of functional group tolerance are the other notable features of the newly discovered reaction. A large number of quinoline and quinolin-2-one derivatives may be prepared from milligram to multigram scale employing this intramolecular reductive cyclization protocol.

Supporting Information



Publication History

Received: 15 March 2023

Accepted after revision: 22 June 2023

Accepted Manuscript online:
22 June 2023

Article published online:
07 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Mfuh AM, Larionov OV. Curr. Med. Chem. 2015; 22: 2819
    • 2b Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
    • 4a Shang X.-F, Morris-Natschke SL, Yang G.-Z, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Zhang J.-Y, Lee K.-H. Med. Res. Rev. 2018; 38: 1614
    • 4b Weyesa A, Mulugeta E. RSC Adv. 2020; 10: 20784
    • 4c Shang X.-F, Morris-Natschke SL, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Yang G.-Z, Lee K.-H. Med. Res. Rev. 2018; 38: 775
    • 5a Mohamed MF. A, Abuo-Rehma GE.-D. A. RSC Adv. 2020; 10: 31139
    • 5b Kundu B, Das SK, Chowdhuri SP, Pal S, Sarkar D, Ghosh A, Mukherjee A, Bhattacharya D, Das BB, Talukdar A. J. Med. Chem. 2019; 62: 3428
    • 5c Solomon VR, Pundir S, Lee H. Sci. Rep. 2019; 9: 6315
    • 6a Nqoro X, Tobeka N, Aderibigbe BA. Molecules 2017; 22: 2268
    • 6b Soares RR, Fernandes da Silva JM, Carlos BC, Campos da Fonseca C, Araújo de Souza LS, Lopes FV, Dias RM. de P, Moreira PO. L, Abramo C, Viana GH. R, Varotti F. deP, David da Silva A, Scopel KK. G. Bioorg. Med. Chem. Lett. 2015; 25: 2308
    • 6c Biot C, Glorian G, Maciejewski LA, Brocard JS, Domarle O, Blampain G, Millet P, Georges AJ, Abessolo H, Dive D, Lebibi J. J. Med. Chem. 1997; 40: 3715
    • 7a Upadhyay A, Kushwaha P, Gupta S, Dodda RP, Ramalingam K, Kant R, Goyal N, Sashidhara KV. Eur. J. Med. Chem. 2018; 154: 172
    • 7b Sahu NP, Pal C, Mandal NB, Banerjee S, Raha M, Kundu AP, Basu A, Ghosh M, Roy K, Bandyopadhyay S. Bioorg. Med. Chem. 2002; 10: 1687
    • 8a Insuasty D, Vidal O, Bernal A, Marquez E, Guzman J, Insuasty B, Quiroga J, Svetaz L, Zacchino S, Puerto G, Abonia R. Antibiotics 2019; 8: 239
    • 8b Eswaran S, Adhikari AV, Chowdhury IH, Pal NK, Thomas KD. Eur. J. Med. Chem. 2010; 45: 3374
    • 9a Dorababu A. ChemistySelect 2021; 6: 2164
    • 9b Hocheggar P, Faist J, Seebacher W, Saf R, Maser P, Kaiser M, Weis R. Med. Chem. 2019; 15: 409
    • 10a Alhaider AA, Abdelkader MA, Lien EJ. J. Med. Chem. 1985; 28: 1394
    • 10b Zajdel P, Marciniec K, Maślankiewicz A, Grychowska K, Satała G, Duszyńska B, Lenda T, Siwek A, Nowak G, Partyka A, Wróbel D, Jastrzębska-Więsek M, Bojarski AJ, Wesołowska A, Pawłowski M. Eur. J. Med. Chem. 2013; 60: 42
    • 11a Mikata Y, So H, Yamashita A, Kawamura A, Mikuriya M, Fukui K, Ichimura A, Yano S. Dalton Trans. 2007; 3330
    • 11b Semeniuc RF, Reamer TJ, Smith MD. New J. Chem. 2010; 34: 439
    • 11c Laguna EM, Olsen PM, Sterling MD, Eichler JF, Rheingold A, Larsen CH. Inorg. Chem. 2014; 53: 12231
    • 11d Basu D, Gilbert-Wilson R, Gray DL, Rauchfiss TB, Dash AK. Organometallics 2018; 37: 2760
    • 11e Kamitani M, Kusaka H, Toriyabe T, Yuge H. Bull. Chem. Soc. Jpn. 2018; 91: 1429
    • 11f Reiersølmoen AC, Fiksdahl A. Eur. J. Org. Chem. 2020; 2867
    • 11g Francio G, Faraone F, Leitner W. Angew. Chem. Int. Ed. 2000; 39: 1428
    • 11h Blaser HU, Jalett HP, Lottenbach W, Studer M. J. Am. Chem. Soc. 2000; 122: 12675
    • 12a Lewinska G, Khachatryan K, Danel KS, Danel Z, Sanetra J. Marszałek K. W. 2020; 12: 2707
    • 12b Mekheimer RA, Ahmed EA, Sadek KU. Tetrahedron 2012; 68: 1637
    • 12c Wainwright M, Kristiansen JE. Int. J. Antimicrob. Agents 2003; 22: 479
    • 12d Lewinska G, Sanetra J, Marszalek KW. J. Mater. Sci.: Mater. Electron. 2021; 32: 18451
    • 12e Danel A, Gondek E, Kityk I. Opt. Mater. 2009; 32: 267
    • 12f Aivali S, Tsimpouki L, Anastasopoulos C, Kallitsis JK. Molecules 2019; 24: 4406
    • 12g Bojinov VB, Grabchev IK. Org. Lett. 2003; 5: 2185
    • 13a Friedländer P. Ber. Dtsch. Chem. Ges. 1882; 15: 2572
    • 13b Friedländer P, Gohring CF. Ber. Dtsch. Chem. Ges. 1883; 16: 1833
    • 13c Skraup ZH. Ber. Dtsch. Chem. Ges. 1880; 13: 2086
    • 13d Doebner O. Justus Liebigs Ann. Chem. 1887; 242: 265
    • 13e Combes A. Bull. Soc. Chim. Fr. 1888; 49: 89
    • 13f Conrad M, Limpach L. Ber. Dtsch. Chem. Ges. 1887; 20: 944
    • 13g Conrad M, Limpach L. Ber. Dtsch. Chem. Ges. 1891; 24: 2990
    • 13h Povarov LS. Russ. Chem. Rev. 1967; 36: 656
    • 13i Povarov LS, Grigos VI, Mikhailov BM. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1963; 12: 1878
    • 14a Evoniuk CJ, dos Passos Gomes G, Ly M, White FD, Alabugin IV. J. Org. Chem. 2017; 82: 4265
    • 14b Das K, Mondal A, Pal D, Srimani D. Org. Lett. 2019; 21: 3223
    • 14c Wang S, Xu J, Song Q. Org. Lett. 2021; 23: 6789
    • 17a Korivi RP, Cheng C.-H. J. Org. Chem. 2006; 71: 7079
    • 17b Chakraborty G, Sikari R, Das S, Mondal R, Sinha S, Banerjee S, Paul ND. J. Org. Chem. 2019; 84: 2626
    • 17c Bains AK, Singh V, Adhikari D. J. Org. Chem. 2020; 85: 14971
    • 18a Oh KH, Kim JG, Park JK. Org. Lett. 2017; 19: 3994
    • 18b Toh KK, Sanjaya S, Sahnoun S, Chong SY, Chiba S. Org. Lett. 2012; 14: 2290
    • 18c Zhu R, Cheng G, Jia C, Xue L, Cui X. J. Org. Chem. 2016; 81: 7539
    • 18d Huang H, Jiang H, Chen K, Liu H. J. Org. Chem. 2009; 74: 5476
    • 18e Sakai N, Tamura K, Shimamura K, Ikeda R, Konakahara T. Org. Lett. 2012; 14: 836
    • 18f Patil NT, Raut VS. J. Org. Chem. 2010; 75: 6961
    • 18g Zheng J, Huang L, Huang C, Wu W, Jiang H. J. Org. Chem. 2015; 80: 1235
    • 18h Yan R, Liu X, Pan C, Zhou X, Li X, Kang X, Huang G. Org. Lett. 2013; 15: 4876
    • 18i Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandaõ P, Paul ND. J. Org. Chem. 2019; 84: 10160
    • 19a Sarma R, Prajapati D. Synlett 2008; 3001
    • 19b Jo W, Baek S.-y, Hwang C, Heo J, Baik M.-H, Cho SH. J. Am. Chem. Soc. 2020; 142: 13235
    • 20a Chen P, Nan J, Hu Y, Ma Q, Ma Y. Org. Lett. 2019; 21: 4812
    • 20b Movassaghi M, Hill MD. J. Am. Chem. Soc. 2006; 128: 4592
    • 20c Yang X, Li L, Li Y, Zhang Y. J. Org. Chem. 2016; 81: 12433
    • 20d Tan Z, Jiang H, Zhang M. Org. Lett. 2016; 18: 3154
    • 21a Abbiati G, Arcadi A, Marinelli F, Rossi E, Verdecchia M. Synlett 2006; 3218
    • 21b Horn J, Marsden SP, Nelson A, House D, Weingarten GG. Org. Lett. 2008; 10: 4117
    • 22a Liu B, Gao H, Yu Y, Wu W, Jiang H. J. Org. Chem. 2013; 78: 10319
    • 22b Li M, Zheng J, Hu W, Li C, Li J, Fang S, Jiang H, Wu W. Org. Lett. 2018; 20: 7245
    • 22c Xing R.-G, Li Y.-N, Liu Q, Han Y.-F, Wei X, Li J, Zhou B. Synthesis 2011; 2066
    • 22d Zhang Z, Tang J, Wang Z. Org. Lett. 2008; 10: 173
    • 22e Selvakumar K, Lingam KA. P, Varma RV. L, Vijayabaskar V. Synlett 2015; 26: 646
  • 23 Zhang X, Liu W, Sun R, Xu X, Wang Z, Yan Y. Synlett 2016; 27: 1563
    • 25a Phanindrudu M, Wakade SB, Tiwari DK, Likhar PR, Tiwari DK. J. Org. Chem. 2018; 83: 9137
    • 25b Lee SY, Cheon C.-H. J. Org. Chem. 2018; 83: 13036
    • 25c Nan J, Chen P, Zhang Y, Yin Y, Wang B, Ma Y. J. Org. Chem. 2020; 85: 14042
    • 25d Cheng D, Yan X, Shen J, Pu Y, Xu X, Yan J. Synthesis 2020; 52: 1833
    • 25e Khong S, Kwon O. J. Org. Chem. 2012; 77: 8257
    • 25f Batchu H, Bhattacharyya S, Batra S. Org. Lett. 2012; 14: 6330
    • 25g Wu X, Geng X, Zhao P, Zhang J, Gong X, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 1550
    • 25h Geng X, Wu X, Zhao P, Zhang J, Wu Y.-D, Wu A.-X. Org. Lett. 2017; 19: 4179
    • 26a De R, Hasija A, Chopra D, Bera MK. Tetrahedron 2022; 120: 132906
    • 26b De R, Sengupta U, Savarimuthu A, Misra S, Nanda J, Bera MK. New J. Chem. 2022; 46: 10603
    • 26c Samanta SK, Sarkar R, Sengupta U, Das S, Ganguly D, Hasija A, Chopra D, Bera MK. Org. Biomol. Chem. 2022; 20: 4650
    • 26d Sarkar R, Samanta SK, Hasija A, Chopra D, Ganguly D, Bera MK. New J. Chem. 2022; 46: 7168
    • 26e De R, Bera MK. Synth. Commun. 2020; 50: 1780
    • 26f Savarimuthu SA, Prakash DG. L, Thomas SA, Gandhi T, Bera MK. Org. Biomol. Chem. 2020; 18: 3552
    • 26g Samanta SK, Bera MK. Org. Biomol. Chem. 2019; 17: 6441
    • 27a Venkatesan H, Hocutt FM, Jones TK, Rabinowitz MH. J. Org. Chem. 2010; 75: 3488
    • 27b Li A.-H, Ahmed E, Chen X, Cox M, Crew AP, Dong H.-Q, Jin M, Ma L, Panicker B, Siu KW, Steinig AG, Stolz KM, Tavares PA. R, Volk B, Weng Q, Werner D, Mulvihill MJ. Org. Biomol. Chem. 2007; 5: 61
    • 27c Li H.-J, Wang C.-C, Zhu S, Dai C.-Y, Wu Y.-C. Adv. Synth. Catal. 2015; 357: 583
    • 27d Li D.-K, Cai Q, Zhou R.-R, Wu Y.-D, Wu A.-X. ChemistrySelect 2017; 2: 1048
    • 27e Banwell MG, Lupton DW, Ma X, Renner J, Sydnes MO. Org. Lett. 2004; 6: 2741
    • 27f Bandarenko M, Kovalenko V. Z. Naturforsch., B 2014; 69: 885
    • 27g Rubio-Presa R, Suárez-Pantiga S, Pedrosa MR, Sanz R. Adv. Synth. Catal. 2018; 360: 2216
    • 27h Joshi G, Wani AA, Sharma S, Bhutani P, Bharatam PV, Paul AT, Kumar R. ACS Omega 2018; 3: 18783
    • 27i Rao LB, Sreenivasulu C, Kishore DR, Satyanarayana G. Tetrahedron 2022; 127: 133093
    • 27j Halimehjani AZ, Namboothiri IN. N, Hooshmand SE. RSC Adv. 2014; 4: 48022
    • 27k Ghora S, Sreenivasulu C, Satyanarayana G. Synthesis 2022; 54: 393
  • 28 Ogiwara Y, Takahashi K, Kitazawa T, Sakai N. J. Org. Chem. 2015; 80: 3101
    • 29a Khurana JM, Gogia A. Org. Prep. Proced. Int. 1997; 29: 1
    • 29b Downs FJ, Carroll RW. Carbohydr. Res. 1981; 88: 323
    • 29c Nose A, Kudo T. Chem. Pharm. Bull. 1984; 32: 2421
    • 29d Hutchins RO, Kandasamy D, Dux FIII, Martanoff CA, Rotstein D, Goldsmith B, Burgoyne W, Cistone F, Dalessandro J, Puglis J. J. Org. Chem. 1978; 43: 2259
    • 29e Proietti G, Prathap KJ, Yu X, Olsson RT, Dinér P. Synthesis 2022; 54: 133
    • 29f Caddick S, Judd DB, Lewis AK. de K, Reich MT, Williams MR. V. Tetrahedron 2003; 59: 5417
    • 29g Brown CA, Ahuja VK. J. Org. Chem. 1973; 38: 2226
  • 30 CCDC 2235665 (5r) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 31 Gheorghe A, Schulte M, Reiser O. J. Org. Chem. 2006; 71: 2173
  • 32 Li Y, Zou H. J. Heterocycl. Chem. 2018; 55: 346
  • 33 Narisada M, Horibe I, Watanabe F, Takeda K. J. Org. Chem. 1989; 54: 5308
    • 34a Yin B.-L, Cai C.-B, Lai J.-Q, Zhang Z.-R, Huang L, Xu L.-W, Jiang H.-F. Adv. Synth. Catal. 2011; 353: 3319
    • 34b Prathap KJ, Wu Q, Olsson RT, Dinér P. Org. Lett. 2017; 19: 4746
  • 35 Foley M, Tilley L. Int. J. Parasitol. 1997; 27: 231
  • 36 Murugan K, Panneerselvam C, Subramaniam J. Sci. Rep. 2022; 12: 4765
  • 37 Read JA, Wilkinson KW, Tranter R, Sessions RB, Brady RL. J. Biol. Chem. 1999; 274: 10213
  • 38 Trott O, Olson AJ. J. Comput. Chem. 2010; 31: 455