Hamostaseologie 2023; 43(01): 052-059
DOI: 10.1055/a-1987-3310
Review Article

Inherited Platelet Disorders: A Short Introduction

Barbara Zieger
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
,
Doris Boeckelmann
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
› Author Affiliations

Abstract

Platelets play an important role regarding coagulation by contributing to thrombus formation by platelet adhesion, aggregation, and α-/δ-granule secretion. Inherited platelet disorders (IPDs) are a very heterogeneous group of disorders that are phenotypically and biochemically diverse. Platelet dysfunction (thrombocytopathy) can be accompanied by a reduction in the number of thrombocytes (thrombocytopenia). The extent of the bleeding tendency can vary greatly. Symptoms comprise mucocutaneous bleeding (petechiae, gastrointestinal bleeding and/or menorrhagia, epistaxis) and increased hematoma tendency. Life-threatening bleeding can occur after trauma or surgery. In the last years, next-generation sequencing had a great impact on unrevealing the underlying genetic cause of individual IPDs. Because IPDs are so diverse, a comprehensive analysis of platelet function and genetic testing is indispensable.



Publication History

Received: 31 October 2022

Accepted: 23 November 2022

Article published online:
20 February 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bastida JM, Benito R, Lozano ML. et al. Molecular diagnosis of inherited coagulation and bleeding disorders. Semin Thromb Hemost 2019; 45 (07) 695-707
  • 2 Zaninetti C, Greinacher A. Diagnosis of inherited platelet disorders on a blood smear. J Clin Med 2020; 9 (02) 539
  • 3 Bastida JM, Lozano ML, Benito R. et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2018; 103 (01) 148-162
  • 4 Daly ME. Transcription factor defects causing platelet disorders. Blood Rev 2016
  • 5 Savoia A, Balduini CL, Savino M. et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood 2001; 97 (05) 1330-1335
  • 6 Lecchi A, Femia EA, Paoletta S. et al. Inherited dysfunctional platelet P2Y12 receptor mutations associated with bleeding disorders. Hamostaseologie 2016; 36 (04) 279-283
  • 7 Favier M, Bordet JC, Favier R. et al. Mutations of the integrin αIIb/β3 intracytoplasmic salt bridge cause macrothrombocytopenia and enlarged platelet α-granules. Am J Hematol 2018; 93 (02) 195-204
  • 8 Akuta K, Kiyomizu K, Kashiwagi H. et al. Knock-in mice bearing constitutively active αIIb (R990W) mutation develop macrothrombocytopenia with severe platelet dysfunction. J Thromb Haemost 2020; 18 (02) 497-509
  • 9 Sandrock-Lang K, Oldenburg J, Wiegering V. et al. Characterisation of patients with Glanzmann thrombasthenia and identification of 17 novel mutations. Thromb Haemost 2015; 113 (04) 782-791
  • 10 Miller JL, Cunningham D, Lyle VA, Finch CN. Mutation in the gene encoding the alpha chain of platelet glycoprotein Ib in platelet-type von Willebrand disease. Proc Natl Acad Sci U S A 1991; 88 (11) 4761-4765
  • 11 Canault M, Ghalloussi D, Grosdidier C. et al. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med 2014; 211 (07) 1349-1362
  • 12 Canault M, Alessi MC. RasGRP2 structure, function and genetic variants in platelet pathophysiology. Int J Mol Sci 2020; 21 (03) 1075
  • 13 Jurk K, Schulz AS, Kehrel BE. et al. Novel integrin-dependent platelet malfunction in siblings with leukocyte adhesion deficiency-III (LAD-III) caused by a point mutation in FERMT3. Thromb Haemost 2010; 103 (05) 1053-1064
  • 14 Stefanini L, Bergmeier W. RAP GTPases and platelet integrin signaling. Platelets 2019; 30 (01) 41-47
  • 15 Mory A, Feigelson SW, Yarali N. et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 2008; 112 (06) 2591
  • 16 De Kock L, Freson K. The (patho)biology of SRC kinase in platelets and megakaryocytes. Medicina (Kaunas) 2020; 56 (12) 633
  • 17 Turro E, Greene D, Wijgaerts A. et al; BRIDGE-BPD Consortium. A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Sci Transl Med 2016; 8 (328) 328ra30
  • 18 Kahr WH, Hinckley J, Li L. et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011; 43 (08) 738-740
  • 19 Huizing M, Malicdan MCV, Wang JA. et al. Hermansky-Pudlak syndrome: mutation update. Hum Mutat 2020; 41 (03) 543-580
  • 20 Pennamen P, Le L, Tingaud-Sequeira A. et al. BLOC1S5 pathogenic variants cause a new type of Hermansky-Pudlak syndrome. Genet Med 2020; 22 (10) 1613-1622
  • 21 Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet 2008; 9: 359-386
  • 22 Ammann S, Schulz A, Krägeloh-Mann I. et al. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 2016; 127 (08) 997-1006
  • 23 Boeckelmann D, Wolter M, Käsmann-Kellner B, Koehler U, Schieber-Nakamura L, Zieger B. A novel likely pathogenic variant in the BLOC1S5 gene associated with Hermansky-Pudlak syndrome type 11 and an overview of human BLOC-1 deficiencies. Cells 2021; 10 (10) 2630
  • 24 Boeckelmann D, Wolter M, Neubauer K. et al. Hermansky-Pudlak syndrome: identification of novel variants in the genes HPS3, HPS5, and DTNBP1 (HPS-7). Front Pharmacol 2022; 12: 786937
  • 25 Kaplan J, De Domenico I, Ward DM. Chediak-Higashi syndrome. Curr Opin Hematol 2008; 15 (01) 22-29
  • 26 Van Gele M, Dynoodt P, Lambert J. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res 2009; 22 (03) 268-282
  • 27 Ménasché G, Pastural E, Feldmann J. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000; 25 (02) 173-176
  • 28 Thomas ER, Walker LJ, Pullaperuma S. et al. Griscelli syndrome type 1: a report of two cases and review of the literature. Clin Dysmorphol 2009; 18 (03) 145-148
  • 29 Fernandez-Prado R, Carriazo-Julio SM, Torra R, Ortiz A, Perez-Gomez MV. MYH9-related disease: it does exist, may be more frequent than you think and requires specific therapy. Clin Kidney J 2019; 12 (04) 488-493
  • 30 Kunishima S, Matsushita T, Kojima T. et al. Immunofluorescence analysis of neutrophil nonmuscle myosin heavy chain-A in MYH9 disorders: association of subcellular localization with MYH9 mutations. Lab Invest 2003; 83 (01) 115-122
  • 31 Hayashi Y, Harada Y, Huang G, Harada H. Myeloid neoplasms with germ line RUNX1 mutation. Int J Hematol 2017; 106 (02) 183-188
  • 32 Topka S, Vijai J, Walsh MF. et al. Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLoS Genet 2015; 11 (06) e1005262
  • 33 Freson K, Matthijs G, Thys C. et al. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet 2002; 11 (02) 147-152
  • 34 Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets 2017; 28 (07) 731-734
  • 35 Bastida JM, Malvestiti S, Boeckelmann D. et al. A novel GATA1 variant in the C-terminal Zink finger compared with the platelet phenotype of patients with a likely pathogenic variant in the N-terminal Zink finger. Cells 2022; 11 (20) 3223
  • 36 Jurk K, Adenaeuer A, Sollfrank S. et al. Novel GATA1 variant causing a bleeding phenotype associated with combined platelet α-/δ-storage pool deficiency and mild dyserythropoiesis modified by a SLC4A1 variant. Cells 2022; 11 (19) 3071
  • 37 Hoffmeister KM, Falet H. Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2016; 141 (Suppl 2, Suppl 2): S68-S72
  • 38 Sørensen AL, Rumjantseva V, Nayeb-Hashemi S. et al. Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 2009; 114 (08) 1645-1654
  • 39 Futterer J, Dalby A, Lowe GC. et al; UK GAPP Study Group. Mutation in GNE is associated with severe congenital thrombocytopenia. Blood 2018; 132 (17) 1855-1858
  • 40 Li X, Li Y, Lei M. et al. Congenital thrombocytopenia associated with GNE mutations in twin sisters: a case report and literature review. BMC Med Genet 2020; 21 (01) 224
  • 41 Revel-Vilk S, Shai E, Turro E. et al. GNE variants causing autosomal recessive macrothrombocytopenia without associated muscle wasting. Blood 2018; 132 (17) 1851-1854
  • 42 Zieger B, Boeckelmann D, Anani W. et al. Novel GNE gene variants associated with severe congenital thrombocytopenia and platelet sialylation defect. Thromb Haemost 2022; 122 (07) 1139-1146
  • 43 Bottega R, Marzollo A, Marinoni M. et al. GNE-related thrombocytopenia: evidence for a mutational hotspot in the ADP/substrate domain of the GNE bifunctional enzyme. Haematologica 2022; 107 (03) 750-754