Synthesis 2021; 53(11): 1879-1888
DOI: 10.1055/a-1360-7798
short review

Homogeneous Catalyzed Aryl–Aryl Cross-Couplings in Flow

Yosuke Ashikari
,
Aiichiro Nagaki


Abstract

Aryl–aryl cross-coupling reactions are important reactions for the production of various biaryl compounds. This short review covers the various aryl–aryl cross-coupling reactions carried out in flow, focusing on the metal species of the aryl nucleophiles used in the cross-coupling reactions.

1 Introduction

2 Suzuki–Miyaura Coupling (B)

3 Migita–Kosugi–Stille Coupling (Sn)

4 Negishi Coupling (Zn)

5 Kumada–Tamao–Corriu Coupling (Mg)

6 Murahashi Coupling (Li)

7 Conclusion



Publication History

Received: 05 December 2020

Accepted after revision: 18 January 2021

Accepted Manuscript online:
18 January 2021

Article published online:
18 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kochi JK, Tamura M. J. Am. Chem. Soc. 1971; 93: 1483
    • 1b Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
    • 1c Corriu RJ. P, Massse JP. J. Chem. Soc., Chem. Commun. 1972; 144
    • 2a Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 2b Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
    • 2c Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 3a Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
    • 3b Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
    • 3c Suzuki A. Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; Weinheim: 1998: 49
    • 3d Suzuki A. Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E. Wiley; New York: 2002: 249
    • 4a Kosugi M, Sasazawa K, Shimizu Y, Migita T. Chem. Lett. 1977; 6: 301
    • 4b Milstein D, Stille JK. J. Am. Chem. Soc. 1978; 100: 3636
    • 4c Stille JK. Angew. Chem., Int. Ed. Engl. 1986; 25: 508
    • 6a Hatanaka Y, Hiyama T. J. Org. Chem. 1988; 53: 918
    • 6b Hiyama T. J. Organomet. Chem. 2002; 653: 58
  • 7 Heravi MM, Zadsirjan V, Hajiabbasi P, Hamidi H. Monatsh. Chem. 2019; 150: 535
    • 8a Murahashi S, Yamamura M, Yanagisawa K, Mita N, Kondo K. J. Org. Chem. 1979; 44: 2408
    • 8b Giannerini M, Fañanás-Mastral M, Feringa BL. Nat. Chem. 2013; 5: 667
    • 8c Firth JD, O’Brien P. ChemCatChem 2015; 7: 395

      For books on flow microreactor synthesis, see:
    • 9a Microreactors in Organic Chemistry and Catalysis, 2nd ed. Wirth T. Wiley; New York: 2013
    • 9b Darvas F, Hessel V, Dorman G. Flow Chemistry . DeGruyter; Berlin: 2014
    • 9c Yoshida J. Basics of Flow Microreactor Synthesis . Springer; Tokyo: 2015

    • For reviews on flow microreactor synthesis, see:
    • 9d Pastre JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849
    • 9e Baxendale IR. J. Chem. Technol. Biotechnol. 2013; 88: 519
    • 9f Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
    • 9g Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
    • 9h Kobayashi S. Chem. Asian J. 2016; 11: 425
    • 9i Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 9j Cantillo D, Kappe CO. React. Chem. Eng. 2017; 2: 7
    • 9k Zhao T, Micouin L, Piccardi R. Helv. Chim. Acta 2019; 102: e1900172

      Recent examples:
    • 10a Fuse S, Mifune Y, Nakamura H, Tanaka H. Nat. Commun. 2016; 7: 13491
    • 10b Seo H, Katcher MH, Jamison TF. Nat. Chem. 2017; 9: 453
    • 10c Parisi G, Colella M, Monticelli S, Romanazzi G, Holzer W, Langer T, Degennaro L, Pace V, Luisi R. J. Am. Chem. Soc. 2017; 139: 13648
    • 10d Inuki S, Sato K, Fukuyama T, Ryu I, Fujimoto Y. J. Org. Chem. 2017; 82: 1248
    • 10e Islam M, Kariuki BM, Shafiq Z, Wirth T, Ahmed N. Eur. J. Org. Chem. 2019; 1371
    • 10f Miyamura H, Tobita F, Suzuki A, Kobayashi S. Angew. Chem. Int. Ed. 2019; 58: 9220
    • 10g Masui S, Manabe Y, Hirao K, Shimoyama A, Fukuyama T, Ryu I, Fukase K. Synlett 2019; 30: 397
    • 10h Elsherbini M, Winterson B, Alharbi H, Folgueiras-Amador AA, Génot C, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 9811
    • 10i Cambié D, Dobbelaar J, Riente P, Vanderspikken J, Shen C, Seeberger PH, Gilmore K, Debije MG, Noël T. Angew. Chem. Int. Ed. 2019; 58: 14374
    • 10j Ahn G.-N, Yu T, Lee H.-J, Gyak K.-W, Kang J.-H, You D, Kim D.-P. Lab Chip 2019; 19: 3535
    • 10k Ashikari Y, Saito K, Nokami T, Yoshida J, Nagaki A. Chem. Eur. J. 2019; 25: 15239
    • 10l Picard B, Pérez K, Lebleu T, Vuluga D, Burel F, Harrowven DC, Chataigner I, Maddaluno J, Legros J. J. Flow Chem. 2020; 10: 139
  • 11 Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD, Moore CM. V, Ya LX, Woodcock J. J. Pharm. Innov. 2015; 10: 191
    • 12a Suga S, Yamada D, Yoshida J. Chem. Lett. 2010; 39: 404
    • 12b Yoshida J, Saito K, Nokami T, Nagaki A. Synlett 2011; 1189

      There have already been some marvelous reviews for flow cross-coupling reactions. See:
    • 13a Noël T, Buchwald SL. Chem. Soc. Rev. 2011; 40: 5010
    • 13b Len C, Bruniaux S, Delbecq F, Parmar VS. Catalysts 2017; 7: 146
    • 14a Ishiyama T, Miyaura N. Chem. Rec. 2004; 3: 271
    • 14b Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 14c Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 14d Shimizu M, Hiyama T. Eur. J. Org. Chem. 2013; 8096
    • 14e Shinokubo H. Proc. Jpn. Acad., Ser. B. 2014; 90: 1
    • 14f Browne DL, Baumann M, Harji BH, Baxendale IR, Ley SV. Org. Lett. 2011; 13: 3312
  • 15 Nagaki A, Moriwaki Y, Yoshida J. Chem. Commun. 2012; 48: 11211
    • 16a Flash Chemistry: Fast Organic Synthesis in Microsystems. Yoshida J. John Wiley & Sons; Chichester: 2008

    • For recent examples, see:
    • 16b Nagaki A, Yamashita H, Hirose K, Tsuchihashi Y, Yoshida J. Angew. Chem. Int. Ed. 2019; 58: 4027
    • 16c Nagaki A, Yamashita H, Hirose K, Tsuchihashi Y, Takumi M, Yoshida J. Chem. Eur. J. 2019; 25: 13719
    • 16d Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 11924
    • 16e Baralle A, Inukai T, Yanagi T, Nogi K, Osuka A, Nagaki A, Yoshida J, Yorimitsu H. Chem. Lett. 2020; 49: 160
    • 16f Ichinari D, Ashikari Y, Mandai K, Aizawa Y, Yoshida J, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 1567
    • 17a Nagaki A, Kim H, Yoshida J. Angew. Chem. Int. Ed. 2008; 47: 7833
    • 17b Nagaki A, Kim H, Yoshida J. Angew. Chem. Int. Ed. 2009; 48: 8063
    • 17c Nagaki A, Kim H, Usutani H, Matsuo C, Yoshida J. Org. Biomol. Chem. 2010; 8: 1212
    • 17d Nagaki A, Kim H, Moriwaki Y, Matsuo C, Yoshida J. Chem. Eur. J. 2010; 16: 11167
    • 17e Kim H, Nagaki A, Yoshida J. Nat. Commun. 2011; 2: 264
    • 17f Nagaki A. Tetrahedron Lett. 2019; 60: 150923
  • 18 Nagaki A, Takabayashi N, Moriwaki Y, Yoshida J. Chem. Eur. J. 2012; 18: 11871
  • 19 Takahashi Y, Ashikari Y, Takumi M, Shimizu Y, Jiang Y, Higuma R, Ishikawa S, Sakaue H, Shite I, Maekawa K, Aizawa Y, Yamashita H, Yonekura Y, Colella M, Luisi R, Takegawa T, Fujita C, Nagaki A. Eur. J. Org. Chem. 2020; 618
  • 20 Anandan SK, Xiao XY, Patel DV, Ward JS. US Patent 2005197336, 2005
  • 21 Shu S, Pellegatti L, Oberli MA, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 10665
  • 22 Giordiano C, Coppi L, Minisci F. US Patent 5312975, 1994
  • 23 Teci M, Tilley M, McGuire MA, Organ MG. Chem. Eur. J. 2016; 22: 17407
  • 24 Noël T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 5943
    • 25a Bao Z, Chan WK, Yu L. J. Am. Chem. Soc. 1995; 117: 12426
    • 25b Liang Y, Feng D, Wu Y, Tsai S.-T, Li G, Ray C, Yu L. J. Am. Chem. Soc. 2009; 131: 7792
  • 26 Seyler H, Jones DJ, Holmes AB, Wong WW. H. Chem. Commun. 2012; 48: 1598
    • 27a Coffin RC, Peet J, Rogers J, Bazan GC. Nat. Chem. 2009; 1: 657
    • 27b Nehls BS, Asawapirom U, Füldner S, Preis E, Farrel T, Scherf U. Adv. Funct. Mater. 2004; 14: 352
  • 28 Wang W, Chen R, Hu Y, Lu H, Qiu L, Ding Y, Sun D, Zhang G. J. Mater. Chem. C. 2019; 7: 8450
  • 29 Frischmuth A, Fernández M, Barl NM, Achrainer F, Zipse H, Berionni G, Mayr H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
  • 30 Becker MR, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 12501
  • 32 Roesner S, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 10463
    • 33a Yang Y, Oldenhuis NJ, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 615
    • 33b Colombe JR, Bernhardt S, Stathakis C, Buchwald SL, Knochel P. Org. Lett. 2013; 15: 5754
    • 34a Garst JF, Soriaga MP. Coord. Chem. Rev. 2004; 248: 623
    • 34b Seyferth D. Organometallics 2009; 28: 1598
    • 35a Wakami H, Yoshida J. Org. Process Res. Dev. 2005; 9: 787
    • 35b Petersen TP, Becker MR, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7933
    • 35c Ganiek MA, Becker MR, Ketels M, Knochel P. Org. Lett. 2016; 18: 828
    • 35d Korwar S, Amir S, Tosso PN, Desai BK, Kong CJ, Fadnis S, Telang NS, Ahmad S, Roper TD, Gupton BF. Eur. J. Org. Chem. 2017; 6495
  • 36 Linghu X, Wong N, Jost V, Fantasia S, Sowell CG, Gosselin F. Org. Process Res. Dev. 2017; 21: 1320
  • 37 Linghu X, Wong N, Blake JF, Gaudino JJ, Moffat JG. Complete Accounts of Integrated Drug Discovery and Development: Recent Examples from the Pharmaceutical Industry, Vol. 1. Abdel-Magid AF, Pesti JA, Vaidyanathan R. ACS Symposium Series Vol. 1307; American Chemical Society; Washington DC: 2019. Chap. 1
  • 38 Buono FG, Zhang Y, Tan Z, Brusoe A, Yang B.-S, Lorenz JC, Giovannini R, Song JJ, Yee NK, Senanayake CH. Eur. J. Org. Chem. 2016; 2599
    • 39a Fürstner A, Leitner A. Angew. Chem. Int. Ed. 2002; 41: 609
    • 39b Fürstner A, Martin R. Chem. Lett. 2005; 34: 624
    • 39c Kuzmina OM, Steib AK, Moyeux A, Cahiez G, Knochel P. Synthesis 2015; 47: 1696
    • 40a Fürstner A, Leitner A, Mendez M, Krause H. J. Am. Chem. Soc. 2002; 124: 13856
    • 40b Chua Y.-Y, Duong HA. Chem. Commun. 2014; 50: 8424
  • 41 Wei X.-J, Abdiaj I, Sambiagio C, Li C, Zysman-Colman E, Alcázar J, Noël T. Angew. Chem. Int. Ed. 2019; 58: 13030
    • 42a Nagaki A, Kenmoku A, Moriwaki Y, Hayashi A, Yoshida J. Angew. Chem. Int. Ed. 2010; 49: 7543
    • 42b Nagaki A, Moriwaki Y, Haraki S, Kenmoku A, Hayashi A, Yoshida J. Chem. Asian J. 2012; 7: 1061