Z Gastroenterol 2020; 58(12): 1241-1266
DOI: 10.1055/a-1255-3413
Übersicht

Pankreatitisbedingte akute Nierenschädigung (AP-AKI): Definition, Pathophysiologie, Diagnostik und Therapie

Acute kidney injury following acute pancreatitis (AP-AKI): Definition, Pathophysiology, Diagnosis and Therapy
Florian Gunnar Scurt
1   Klinik für Nieren- und Hochdruckerkrankungen, Diabetologie und Endokrinologie, Medizinische Fakultät der Otto-von-Guericke-Universität, Magdeburg, Deutschland
2   Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
,
Katrin Bose
2   Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
3   Universitätsklinik für Gastroenterologie, Hepatologie und Infektiologie, Medizinische Fakultät der Otto-von-Guericke-Universität, Otto-von-Guericke-Universität, Magdeburg, Deutschland
,
Ali Canbay
4   Ruhr-Universität Bochum, Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Deutschland
,
Peter R. Mertens
1   Klinik für Nieren- und Hochdruckerkrankungen, Diabetologie und Endokrinologie, Medizinische Fakultät der Otto-von-Guericke-Universität, Magdeburg, Deutschland
2   Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
,
1   Klinik für Nieren- und Hochdruckerkrankungen, Diabetologie und Endokrinologie, Medizinische Fakultät der Otto-von-Guericke-Universität, Magdeburg, Deutschland
2   Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
› Author Affiliations

Zusammenfassung

Die akute Pankreatitis (AP) stellt die häufigste gastrointestinale Ursache für Krankenhausaufnahmen dar. Die Mortalität liegt bei 5 %, kann jedoch in Abhängigkeit vom Schweregrad auf bis zu 40 % ansteigen. Insbesondere schwere Verlaufsformen sind mit einem Multiorganversagen vergesellschaftet und haben eine schlechte Prognose. In diesem Zusammenhang kann es bei bis zu 10 % der Patienten zum akuten Nierenversagen (Acute kidney injury, AKI) kommen, das sich meistens spät nach dem Versagen anderer Organe entwickelt, aber auch initial oder isoliert auftreten kann. Darüber hinaus bestimmt das AKI als Komplikation der schweren Pankreatitis maßgeblich die Prognose, da die Mortalität, vor allem bei dialysepflichtigem AKI, auf bis zu 75 % dramatisch ansteigen kann.

Im Vergleich zu anderen intensivmedizinisch assoziierten AKIs (z. B. Volumenmangel, kardiales Pumpversagen, Sepsis oder Intoxikationen) weist das mit einer AP assoziierte AKI (AP-AKI) viele Gemeinsamkeiten, aber auch deutliche Unterschiede auf. Die zwei existierenden Formen des AP-AKI (initiale prärenale Schädigung aufgrund eines Volumenmangels, intrarenale Schädigung in der Spätphase) können aufeinander folgend, aber auch unabhängig voneinander auftreten. Obwohl die Pathophysiologie gänzlich unverstanden ist, scheint eine systemische und lokale entzündliche Reaktion eine wichtige Rolle zu spielen. Die frühe Diagnose und die rechtzeitige Einleitung einer effektiven supportiven und ätiopathogenetisch gerichteten Therapie kann die Prognose deutlich verbessern. Ungeachtet dessen finden sich derzeit nur wenige Studien, die sich explizit mit AKI und Pankreatitis befassen.

In der vorliegenden Übersicht konzentrieren wir uns – unter Verwendung der aktuellsten Literatur – auf die zugrunde liegenden pathophysiologischen Mechanismen des AP-AKI, untersuchen in dieser Hinsicht den diagnostischen und prognostischen Stellenwert alter und neuer Serum- und Urinmarker und diskutieren die für die AP-AKI empfohlenen Behandlungsansätze inklusive möglicher Nierenersatzverfahren.

Abstract

Acute pancreatitis (AP) is the most frequent gastrointestinal cause for hospitalization and one of the leading causes of in-hospital deaths. Severe acute pancreatitis is often associated with multiorgan failure and especially with acute kidney injury (AKI). AKI can develop early or late in the course of the disease and is a strong determinator of outcome. The mortality in the case of dialysis-dependent AKI and acute pancreatitis raises exponentially in the affected patients. AP-induced AKI (AP-AKI) shows many similarities but also distinct differences to other causes of AKI occurring in the intensive care unit setting. The knowledge of the exact pathophysiology can help to adjust, control and improve therapeutic approaches to the disease. Unfortunately, there are only a few studies dealing with AP and AKI.

In this review, we discuss recent data about pathogenesis, causes and management of AP-AKI in patients with severe acute pancreatitis and exploit in this regard the diagnostic and prognostic potential of respective newer serum and urine markers.



Publication History

Received: 20 June 2020

Accepted: 24 August 2020

Article published online:
08 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet 2015; 386: 85-96 . doi:10.1016/S0140-6736(14)60649-8
  • 2 Johnson CD, Besselink MG, Carter R. Acute pancreatitis. Bmj 2014; 349: g4859 . doi:10.1136/bmj.g4859
  • 3 Peery AF, Dellon ES, Lund J. et al Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology 2012; 143: 1179-1187 e1173 . doi:10.1053/j.gastro.2012.08.002
  • 4 Banks PA, Bollen TL, Dervenis C. et al Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut 2013; 62: 102-111 . doi:10.1136/gutjnl-2012-302779
  • 5 Waller A, Long B, Koyfman A. et al Acute Pancreatitis: Updates for Emergency Clinicians. The Journal of emergency medicine 2018; 55: 769-779 . doi:10.1016/j.jemermed.2018.08.009
  • 6 Lin HY, Lai JI, Lai YC. et al Acute renal failure in severe pancreatitis: A population-based study. Ups J Med Sci 2011; 116: 155-159 . doi:10.3109/03009734.2010.547636
  • 7 Devani K, Charilaou P, Radadiya D. et al Acute pancreatitis: Trends in outcomes and the role of acute kidney injury in mortality- A propensity-matched analysis. Pancreatology: official journal of the International Association of Pancreatology 2018; 18: 870-877 . doi:10.1016/j.pan.2018.10.002
  • 8 Forsmark CE, Vege SS, Wilcox CM. Acute Pancreatitis. The New England journal of medicine 2016; 375: 1972-1981 . doi:10.1056/NEJMra1505202
  • 9 Nassar TI, Qunibi WY. AKI Associated with Acute Pancreatitis. Clinical journal of the American Society of Nephrology: CJASN 2019; 14: 1106-1115 . doi:10.2215/CJN.13191118
  • 10 Zhang XP, Wang L, Zhou YF. The pathogenic mechanism of severe acute pancreatitis complicated with renal injury: a review of current knowledge. Digestive diseases and sciences 2008; 53: 297-306 . doi:10.1007/s10620-007-9866-5
  • 11 Levy M, Geller R, Hymovitch S. Renal failure in dogs with experimental acute pancreatitis: role of hypovolemia. The American journal of physiology 1986; 251: F969-F977 . doi:10.1152/ajprenal.1986.251.6.F969
  • 12 Satake K, Kanazawa G, Hiura A. et al Renal function in experimentally induced acute pancreatitis in dogs: how it is affected by the nephrotoxic substance in pancreatic exudate from ascitic fluid. The Japanese journal of surgery 1991; 21: 88-95
  • 13 Ofstad E, Amundsen E, Hagen PO. Experimental acute pancreatitis in dogs. II. Histamine release induced by pancreatic exudate. Scandinavian journal of gastroenterology 1969; 4: 75-79 . doi:10.3109/00365526909180153
  • 14 Shimizu I, Wada S, Okahisa T. et al Radioimmunoreactive plasma bradykinin levels and histological changes during the course of cerulein-induced pancreatitis in rats. Pancreas 1993; 8: 220-225
  • 15 Jia Z, Zhang Y, Ding G. et al Role of COX-2/mPGES-1/prostaglandin E2 cascade in kidney injury. Mediators of inflammation 2015; 2015: 147894 . doi:10.1155/2015/147894
  • 16 Wu XN. Current concept of pathogenesis of severe acute pancreatitis. World journal of gastroenterology 2000; 6: 32-36 . doi:10.3748/wjg.v6.i1.32
  • 17 Lerch MM, Gorelick FS. Early trypsinogen activation in acute pancreatitis. The Medical clinics of North America 2000; 84: 549-563, viii . doi:10.1016/s0025-7125(05)70239-x
  • 18 Gronroos JM, Hietaranta AJ, Nevalainen TJ. Renal tubular cell injury and serum phospholipase A2 activity in acute pancreatitis. The British journal of surgery 1992; 79: 800-801 . doi:10.1002/bjs.1800790830
  • 19 Iida T, Yokoi H, Kawarada Y. The effects of a thromboxane A2 synthesis inhibitor and a prostaglandin I2 analogue on experimental acute necrotizing pancreatitis in rats. Pancreas 1998; 17: 140-147
  • 20 Dumnicka P, Maduzia D, Ceranowicz P. et al The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications. International journal of molecular sciences 2017; 18 DOI: 10.3390/ijms18020354.
  • 21 Ji Z, Wang B, Li S. The role of platelet activating factor in pathogenesis of acute pancreatitis in dogs. Zhonghua wai ke za zhi [Chinese journal of surgery] 1997; 35: 108-110
  • 22 Hackert T, Pfeil D, Hartwig W. et al Platelet function in acute experimental pancreatitis. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 2007; 11: 439-444 . doi:10.1007/s11605-007-0128-9
  • 23 Shah N, Dhar D, El Zahraa Mohammed F. et al Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. Journal of hepatology 2012; 56: 1047-1053 . doi:10.1016/j.jhep.2011.11.024
  • 24 Lindquist JA, Brandt S, Bernhardt A. et al The role of cold shock domain proteins in inflammatory diseases. Journal of molecular medicine 2014; 92: 207-216 . doi:10.1007/s00109-014-1136-3
  • 25 Windsor JA, Fearon KC, Ross JA. et al Role of serum endotoxin and antiendotoxin core antibody levels in predicting the development of multiple organ failure in acute pancreatitis. The British journal of surgery 1993; 80: 1042-1046 . doi:10.1002/bjs.1800800840
  • 26 Sugiura M, Inagami T, Kon V. Endotoxin stimulates endothelin-release in vivo and in vitro as determined by radioimmunoassay. Biochemical and biophysical research communications 1989; 161: 1220-1227 . doi:10.1016/0006-291x(89)91372-7
  • 27 Kowalczyk A, Kleniewska P, Kolodziejczyk M. et al The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Archivum immunologiae et therapiae experimentalis 2015; 63: 41-52 . doi:10.1007/s00005-014-0310-1
  • 28 Werner MH, Hayes DF, Lucas CE. et al Renal vasoconstriction in association with acute pancreatitis. American journal of surgery 1974; 127: 185-190 . doi:10.1016/0002-9610(74)90155-x
  • 29 Lipsett PA. Serum cytokines, proteins, and receptors in acute pancreatitis: mediators, markers, or more of the same?. Critical care medicine 2001; 29: 1642-1644 . doi:10.1097/00003246-200108000-00029
  • 30 Ogawa M. Acute pancreatitis and cytokines: “second attack” by septic complication leads to organ failure. Pancreas 1998; 16: 312-315
  • 31 Malmstrom ML, Hansen MB, Andersen AM. et al Cytokines and organ failure in acute pancreatitis: inflammatory response in acute pancreatitis. Pancreas 2012; 41: 271-277 . doi:10.1097/MPA.0b013e3182240552
  • 32 Klar E, Messmer K, Warshaw AL. et al Pancreatic ischaemia in experimental acute pancreatitis: mechanism, significance and therapy. The British journal of surgery 1990; 77: 1205-1210 . doi:10.1002/bjs.1800771104
  • 33 Mayer J, Rau B, Gansauge F. et al Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 2000; 47: 546-552 . doi:10.1136/gut.47.4.546
  • 34 Fisic E, Poropat G, Bilic-Zulle L. et al The Role of IL-6, 8, and 10, sTNFr, CRP, and Pancreatic Elastase in the Prediction of Systemic Complications in Patients with Acute Pancreatitis. Gastroenterology research and practice 2013; 2013: 282645 . doi:10.1155/2013/282645
  • 35 Bose SM, Verma GR, Mazumdar A. et al Significance of serum endotoxin and antiendotoxin antibody levels in predicting the severity of acute pancreatitis. Surgery today 2002; 32: 602-607 . doi:10.1007/s005950200109
  • 36 Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation?. Inflammatory intestinal diseases 2016; 1: 135-145 . doi:10.1159/000447252
  • 37 Signoretti M, Roggiolani R, Stornello C. et al Gut microbiota and pancreatic diseases. Minerva gastroenterologica e dietologica 2017; 63: 399-410 . doi:10.23736/S1121-421X.17.02387-X
  • 38 Habtezion A. Inflammation in acute and chronic pancreatitis. Current opinion in gastroenterology 2015; 31: 395-399 . doi:10.1097/MOG.0000000000000195
  • 39 Navasa M, Follo A, Filella X. et al Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality. Hepatology 1998; 27: 1227-1232 . doi:10.1002/hep.510270507
  • 40 Du Plessis J, Vanheel H, Janssen CE. et al Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. Journal of hepatology 2013; 58: 1125-1132 . doi:10.1016/j.jhep.2013.01.038
  • 41 Suk K, Yeou Kim S, Kim H. Regulation of IL-18 production by IFN gamma and PGE2 in mouse microglial cells: involvement of NF-kB pathway in the regulatory processes. Immunology letters 2001; 77: 79-85 . doi:10.1016/s0165-2478(01)00209-7
  • 42 Izumi T, Saito Y, Kishimoto I. et al Blockade of the natriuretic peptide receptor guanylyl cyclase-A inhibits NF-kappaB activation and alleviates myocardial ischemia/reperfusion injury. The Journal of clinical investigation 2001; 108: 203-213 . doi:10.1172/JCI12088
  • 43 Nishikawa K, Guo YJ, Miyasaka M. et al Antibodies to intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 prevent crescent formation in rat autoimmune glomerulonephritis. The Journal of experimental medicine 1993; 177: 667-677 . doi:10.1084/jem.177.3.667
  • 44 Schoenberg MH, Buchler M, Gaspar M. et al Oxygen free radicals in acute pancreatitis of the rat. Gut 1990; 31: 1138-1143 . doi:10.1136/gut.31.10.1138
  • 45 Rau B, Poch B, Gansauge F. et al Pathophysiologic role of oxygen free radicals in acute pancreatitis: initiating event or mediator of tissue damage?. Annals of surgery 2000; 231: 352-360 . doi:10.1097/00000658-200003000-00008
  • 46 Sanfey H, Bulkley GB, Cameron JL. The pathogenesis of acute pancreatitis. The source and role of oxygen-derived free radicals in three different experimental models. Annals of surgery 1985; 201: 633-639 . doi:10.1097/00000658-198505000-00013
  • 47 Uhlmann D, Ludwig S, Geissler F. et al Importance of microcirculatory disturbances in the pathogenesis of pancreatitis. Zentralblatt fur Chirurgie 2001; 126: 873-878 . doi:10.1055/s-2001-19157
  • 48 Lieberthal W. Biology of ischemic and toxic renal tubular cell injury: role of nitric oxide and the inflammatory response. Current opinion in nephrology and hypertension 1998; 7: 289-295
  • 49 Nishiwaki H, Ko I, Hiura A. et al Renal microcirculation in experimental acute pancreatitis of dogs. Renal failure 1993; 15: 27-31 . doi:10.3109/08860229309065568
  • 50 Greenstein RJ, Krakoff LR, Felton K. Activation of the renin system in acute pancreatitis. The American journal of medicine 1987; 82: 401-404 . doi:10.1016/0002-9343(87)90437-2
  • 51 Uehara S, Honjyo K, Furukawa S. et al Role of the kallikrein-kinin system in human pancreatitis. Advances in experimental medicine and biology 1989; 247B: 643-648 . doi:10.1007/978-1-4615-9546-5_106
  • 52 Trebicka J, Amoros A, Pitarch C. et al Addressing Profiles of Systemic Inflammation Across the Different Clinical Phenotypes of Acutely Decompensated Cirrhosis. Frontiers in immunology 2019; 10: 476 . doi:10.3389/fimmu.2019.00476
  • 53 Angeli P, Garcia-Tsao G, Nadim MK. et al News in Pathophysiology, Definition and Classification of Hepatorenal Syndrome: a step beyond the International Club of Ascites (ICA) Consensus document. Journal of hepatology 2019; DOI: 10.1016/j.jhep.2019.07.002.
  • 54 Patel DM, Connor Jr MJ. Intra-Abdominal Hypertension and Abdominal Compartment Syndrome: An Underappreciated Cause of Acute Kidney Injury. Advances in chronic kidney disease 2016; 23: 160-166 . doi:10.1053/j.ackd.2016.03.002
  • 55 De Waele JJ, De Laet I, Kirkpatrick AW. et al Intra-abdominal Hypertension and Abdominal Compartment Syndrome. American journal of kidney diseases: the official journal of the National Kidney Foundation 2011; 57: 159-169 . doi:10.1053/j.ajkd.2010.08.034
  • 56 Scurt FG, Kuczera T, Mertens PR. et al The Cardiorenal Syndrome. Deutsche medizinische Wochenschrift 2019; 144: 910-916 . doi:10.1055/a-0768-5899
  • 57 Fickert P, Krones E, Pollheimer MJ. et al Bile acids trigger cholemic nephropathy in common bile-duct-ligated mice. Hepatology 2013; 58: 2056-2069 . doi:10.1002/hep.26599
  • 58 Bairaktari E, Liamis G, Tsolas O. et al Partially reversible renal tubular damage in patients with obstructive jaundice. Hepatology 2001; 33: 1365-1369 . doi:10.1053/jhep.2001.25089
  • 59 van Slambrouck CM, Salem F, Meehan SM. et al Bile cast nephropathy is a common pathologic finding for kidney injury associated with severe liver dysfunction. Kidney international 2013; 84: 192-197 . doi:10.1038/ki.2013.78
  • 60 Weiner M, Segelmark M. The clinical presentation and therapy of diseases related to anti-neutrophil cytoplasmic antibodies (ANCA). Autoimmunity reviews 2016; 15: 978-982 . doi:10.1016/j.autrev.2016.07.016
  • 61 Katikineni VS, Kant S, Gapud EJ. et al Uncommon presentations in ANCA vasculitis: clinical characteristics and outcomes. Clinical rheumatology 2019; 38: 2195-2199 . doi:10.1007/s10067-019-04568-4
  • 62 Bayer G, von Tokarski F, Thoreau B. et al Etiology and Outcomes of Thrombotic Microangiopathies. Clinical journal of the American Society of Nephrology: CJASN 2019; 14: 557-566 . doi:10.2215/CJN.11470918
  • 63 Le Clech A, Simon-Tillaux N, Provot F. et al Atypical and secondary hemolytic uremic syndromes have a distinct presentation and no common genetic risk factors. Kidney international 2019; 95: 1443-1452 . doi:10.1016/j.kint.2019.01.023
  • 64 Singh NP, Aggarwal NP, Shah HR. et al Hemolytic-uremic Syndrome Complicating Acute Pancreatitis. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine 2017; 21: 534-536 . doi:10.4103/ijccm.IJCCM_121_17
  • 65 Singh K, Nadeem AJ, Doratotaj B. A rare case of thrombotic microangiopathy triggered by acute pancreatitis. BMJ case reports 2017; 2017 DOI: 10.1136/bcr-2016-218581.
  • 66 Swisher KK, Doan JT, Vesely SK. et al Pancreatitis preceding acute episodes of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: report of five patients with a systematic review of published reports. Haematologica 2007; 92: 936-943 . doi:10.3324/haematol.10963
  • 67 Kleger A, Seufferlein T, Wagner M. et al IgG4-related autoimmune diseases: Polymorphous presentation complicates diagnosis and treatment. Deutsches Arzteblatt international 2015; 112: 128-135 . doi:10.3238/arztebl.2015.0128
  • 68 Zhang P, Cornell LD. IgG4-Related Tubulointerstitial Nephritis. Advances in chronic kidney disease 2017; 24: 94-100 . doi:10.1053/j.ackd.2016.12.001
  • 69 Saeki T, Kawano M. IgG4-related kidney disease. Kidney international 2014; 85: 251-257 . doi:10.1038/ki.2013.393
  • 70 Perazella MA. Pharmacology behind Common Drug Nephrotoxicities. Clinical journal of the American Society of Nephrology: CJASN 2018; 13: 1897-1908 . doi:10.2215/CJN.00150118
  • 71 Lima C, Macedo E. Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Disease markers 2018; 2018: 4907024 . doi:10.1155/2018/4907024
  • 72 Davenport A, Argawal B, Wright G. et al Can non-invasive measurements aid clinical assessment of volume in patients with cirrhosis?. World journal of hepatology 2013; 5: 433-438 . doi:10.4254/wjh.v5.i8.433
  • 73 Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Critical care 2016; 20: 299 . doi:10.1186/s13054-016-1478-z
  • 74 Nigam PK. Bilirubin Interference in Serum Creatinine Estimation by Jaffe’s kinetic Method and Its Rectification in Three Different Kits. Indian J Clin Biochem 2016; 31: 237-239 . doi:10.1007/s12291-015-0545-6
  • 75 Andreucci M, Faga T, Pisani A. et al The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. European journal of internal medicine 2017; 39: 1-8 . doi:10.1016/j.ejim.2016.12.001
  • 76 Leem AY, Park MS, Park BH. et al Value of Serum Cystatin C Measurement in the Diagnosis of Sepsis-Induced Kidney Injury and Prediction of Renal Function Recovery. Yonsei medical journal 2017; 58: 604-612 . doi:10.3349/ymj.2017.58.3.604
  • 77 Francoz C, Nadim MK, Durand F. Kidney biomarkers in cirrhosis. Journal of hepatology 2016; 65: 809-824 . doi:10.1016/j.jhep.2016.05.025
  • 78 De Souza V, Hadj-Aissa A, Dolomanova O. et al Creatinine- versus cystatine C-based equations in assessing the renal function of candidates for liver transplantation with cirrhosis. Hepatology 2014; 59: 1522-1531 . doi:10.1002/hep.26886
  • 79 Mindikoglu AL, Dowling TC, Weir MR. et al Performance of chronic kidney disease epidemiology collaboration creatinine-cystatin C equation for estimating kidney function in cirrhosis. Hepatology 2014; 59: 1532-1542 . doi:10.1002/hep.26556
  • 80 Dai X, Zeng Z, Fu C. et al Diagnostic value of neutrophil gelatinase-associated lipocalin, cystatin C, and soluble triggering receptor expressed on myeloid cells-1 in critically ill patients with sepsis-associated acute kidney injury. Critical care 2015; 19: 223 . doi:10.1186/s13054-015-0941-6
  • 81 Kim CS, Bae EH, Ma SK. et al A Prospective Observational Study on the Predictive Value of Serum Cystatin C for Successful Weaning from Continuous Renal Replacement Therapy. Kidney & blood pressure research 2018; 43: 872-881 . doi:10.1159/000490335
  • 82 Chai X, Huang HB, Feng G. et al Baseline Serum Cystatin C Is a Potential Predictor for Acute Kidney Injury in Patients with Acute Pancreatitis. Disease markers 2018; 2018: 8431219 . doi:10.1155/2018/8431219
  • 83 Wajda J, Dumnicka P, Sporek M. et al Does Beta-Trace Protein (BTP) Outperform Cystatin C as a Diagnostic Marker of Acute Kidney Injury Complicating the Early Phase of Acute Pancreatitis?. J Clin Med 2020; 9 DOI: 10.3390/jcm9010205.
  • 84 Kusnierz-Cabala B, Gala-Bladzinska A, Mazur-Laskowska M. et al Serum Uromodulin Levels in Prediction of Acute Kidney Injury in the Early Phase of Acute Pancreatitis. Molecules 2017; 22 DOI: 10.3390/molecules22060988.
  • 85 Bokenkamp A, Laarman CA, Braam KI. et al Effect of corticosteroid therapy on low-molecular weight protein markers of kidney function. Clinical chemistry 2007; 53: 2219-2221 . doi:10.1373/clinchem.2007.094946
  • 86 Fricker M, Wiesli P, Brandle M. et al Impact of thyroid dysfunction on serum cystatin C. Kidney international 2003; 63: 1944-1947 . doi:10.1046/j.1523-1755.2003.00925.x
  • 87 Yokoyama H, Inoue T, Node K. Effect of insulin-unstimulated diabetic therapy with miglitol on serum cystatin C level and its clinical significance. Diabetes research and clinical practice 2009; 83: 77-82 . doi:10.1016/j.diabres.2008.09.049
  • 88 Jin T, Jiang K, Deng L. et al Response and outcome from fluid resuscitation in acute pancreatitis: a prospective cohort study. HPB: the official journal of the International Hepato Pancreato Biliary Association 2018; 20: 1082-1091 . doi:10.1016/j.hpb.2018.05.018
  • 89 Koop AH, Stancampiano FF, Jackson J. et al Association of Total Fluid Intake and Output with Duration of Hospital Stay in Patients with Acute Pancreatitis. Gastroenterology research and practice 2018; 2018: 7614381 . doi:10.1155/2018/7614381
  • 90 Amathieu R, Al-Khafaji A, Sileanu FE. et al Significance of oliguria in critically ill patients with chronic liver disease. Hepatology 2017; 66: 1592-1600 . doi:10.1002/hep.29303
  • 91 Pahwa AK, Sperati CJ. Urinary fractional excretion indices in the evaluation of acute kidney injury. Journal of hospital medicine 2016; 11: 77-80 . doi:10.1002/jhm.2501
  • 92 Salerno F, Gerbes A, Gines P. et al Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 2007; 56: 1310-1318 . doi:10.1136/gut.2006.107789
  • 93 Carvounis CP, Nisar S, Guro-Razuman S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney international 2002; 62: 2223-2229 . doi:10.1046/j.1523-1755.2002.00683.x
  • 94 Dewitte A, Biais M, Petit L. et al Fractional excretion of urea as a diagnostic index in acute kidney injury in intensive care patients. Journal of critical care 2012; 27: 505-510 . doi:10.1016/j.jcrc.2012.02.018
  • 95 Goldstein MH, Lenz PR, Levitt MF. Effect of urine flow rate on urea reabsorption in man: urea as a “tubular marker”. J Appl Physiol 1969; 26: 594-599 . doi:10.1152/jappl.1969.26.5.594
  • 96 Schmidt C, Hocherl K, Bucher M. Cytokine-mediated regulation of urea transporters during experimental endotoxemia. American journal of physiology Renal physiology 2007; 292: F1479-F1489 . doi:10.1152/ajprenal.00460.2006
  • 97 Shearman CP, Gosling P, Walker KJ. Is low proteinuria an early predictor of severity of acute pancreatitis?. Journal of clinical pathology 1989; 42: 1132-1135 . doi:10.1136/jcp.42.11.1132
  • 98 Rybak K, Sporek M, Gala-Bladzinska A. et al Urinalysis in patients at the early stage of acute pancreatitis. Przeglad lekarski 2016; 73: 88-92
  • 99 Zuidema MJ, van Santvoort HC, Besselink MG. et al The predictive value of proteinuria in acute pancreatitis. Pancreatology: official journal of the International Association of Pancreatology 2014; 14: 484-489 . doi:10.1016/j.pan.2014.09.004
  • 100 Trawale JM, Paradis V, Rautou PE. et al The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver international: official journal of the International Association for the Study of the Liver 2010; 30: 725-732 . doi:10.1111/j.1478-3231.2009.02182.x
  • 101 Simsek A, Tugcu V, Tasci AI. New biomarkers for the quick detection of acute kidney injury. ISRN Nephrol 2013; 2013: 394582 . doi:10.5402/2013/394582
  • 102 Fodor R, Grigorescu B, Veres M. et al Plasma Neutrophil Gelatinase Associated Lipocalin (NGAL) – Early Biomarker for Acute Kidney Injury in Critically Ill Patients. J Crit Care Med (Targu Mures) 2015; 1: 154-161 . doi:10.1515/jccm-2015-0023
  • 103 Martensson J, Bellomo R. The rise and fall of NGAL in acute kidney injury. Blood purification 2014; 37: 304-310 . doi:10.1159/000364937
  • 104 Siddappa PK, Kochhar R, Sarotra P. et al Neutrophil gelatinase-associated lipocalin: An early biomarker for predicting acute kidney injury and severity in patients with acute pancreatitis. JGH open: an open access journal of gastroenterology and hepatology 2019; 3: 105-110 . doi:10.1002/jgh3.12112
  • 105 Sporek M, Gala-Bladzinska A, Dumnicka P. et al Urine NGAL is useful in the clinical evaluation of renal function in the early course of acute pancreatitis. Folia medica Cracoviensia 2016; 56: 13-25
  • 106 Amaral Pedroso L, Nobre V, Dias Carneiro de Almeida C. et al Acute kidney injury biomarkers in the critically ill. Clin Chim Acta 2020; 508: 170-178 . doi:10.1016/j.cca.2020.05.024
  • 107 Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med 2017; 55: 1074-1089 . doi:10.1515/cclm-2016-0973
  • 108 Clerico A, Galli C, Fortunato A. et al Neutrophil gelatinase-associated lipocalin (NGAL) as biomarker of acute kidney injury: a review of the laboratory characteristics and clinical evidences. Clin Chem Lab Med 2012; 50: 1505-1517 . doi:10.1515/cclm-2011-0814
  • 109 Makris K, Rizos D, Kafkas N. et al Neurophil gelatinase-associated lipocalin as a new biomarker in laboratory medicine. Clin Chem Lab Med 2012; 50: 1519-1532 . doi:10.1515/cclm-2012-0227
  • 110 Maisel AS, Wettersten N, van Veldhuisen DJ. et al Neutrophil Gelatinase-Associated Lipocalin for Acute Kidney Injury During Acute Heart Failure Hospitalizations: The AKINESIS Study. J Am Coll Cardiol 2016; 68: 1420-1431 . doi:10.1016/j.jacc.2016.06.055
  • 111 Kokkoris S, Pipili C, Grapsa E. et al Novel biomarkers of acute kidney injury in the general adult ICU: a review. Renal failure 2013; 35: 579-591 . doi:10.3109/0886022X.2013.773835
  • 112 Wang K, Xie S, Xiao K. et al Biomarkers of Sepsis-Induced Acute Kidney Injury. Biomed Res Int 2018; 2018: 6937947 . doi:10.1155/2018/6937947
  • 113 Lim AI, Tang SC, Lai KN. et al Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells?. Journal of cellular physiology 2013; 228: 917-924 . doi:10.1002/jcp.24267
  • 114 Yin C, Wang N. Kidney injury molecule-1 in kidney disease. Renal failure 2016; 38: 1567-1573 . doi:10.1080/0886022X.2016.1193816
  • 115 Tu Y, Wang H, Sun R. et al Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury. Renal failure 2014; 36: 1559-1563 . doi:10.3109/0886022X.2014.949764
  • 116 Shao X, Tian L, Xu W. et al Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PloS one 2014; 9: e84131 . doi:10.1371/journal.pone.0084131
  • 117 Fazel M, Sarveazad A, Mohamed AliK. et al Accuracy of Urine Kidney Injury Molecule-1 in Predicting Acute Kidney Injury in Children; a Systematic Review and Meta-Analysis. Arch Acad Emerg Med 2020; 8: e44
  • 118 Wajda J, Dumnicka P, Kolber W. et al The Marker of Tubular Injury, Kidney Injury Molecule-1 (KIM-1), in Acute Kidney Injury Complicating Acute Pancreatitis: A Preliminary Study. J Clin Med 2020; 9 DOI: 10.3390/jcm9051463.
  • 119 Steubl D, Block M, Herbst V. et al Plasma Uromodulin Correlates With Kidney Function and Identifies Early Stages in Chronic Kidney Disease Patients. Medicine 2016; 95: e3011 . doi:10.1097/MD.0000000000003011
  • 120 Kashani K, Al-Khafaji A, Ardiles T. et al Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Critical care 2013; 17: R25 . doi:10.1186/cc12503
  • 121 Liu C, Lu X, Mao Z. et al The diagnostic accuracy of urinary [TIMP-2]. [IGFBP7] for acute kidney injury in adults: A PRISMA-compliant meta-analysis. Medicine 2017; 96: e7484 . doi:10.1097/MD.0000000000007484
  • 122 Su Y, Gong Z, Wu Y. et al Diagnostic Value of Urine Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor-Binding Protein 7 for Acute Kidney Injury: A Meta-Analysis. PloS one 2017; 12: e0170214 . doi:10.1371/journal.pone.0170214
  • 123 Chindarkar NS, Chawla LS, Straseski JA. et al Reference intervals of urinary acute kidney injury (AKI) markers [IGFBP7][TIMP2] in apparently healthy subjects and chronic comorbid subjects without AKI. Clin Chim Acta 2016; 452: 32-37 . doi:10.1016/j.cca.2015.10.029
  • 124 Bell M, Larsson A, Venge P. et al Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury. Disease markers 2015; 2015: 158658 . doi:10.1155/2015/158658
  • 125 Sporek M, Dumnicka P, Gala-Bladzinska A. et al Angiopoietin-2 Is an Early Indicator of Acute Pancreatic-Renal Syndrome in Patients with Acute Pancreatitis. Mediators of inflammation 2016; 2016: 5780903 . doi:10.1155/2016/5780903
  • 126 Dumnicka P, Sporek M, Mazur-Laskowska M. et al Serum Soluble Fms-Like Tyrosine Kinase 1 (sFlt-1) Predicts the Severity of Acute Pancreatitis. International journal of molecular sciences 2016; 17 DOI: 10.3390/ijms17122038.
  • 127 Dumnicka P, Kusnierz-Cabala B, Sporek M. et al Serum Concentrations of Angiopoietin-2 and Soluble fms-Like Tyrosine Kinase 1 (sFlt-1) Are Associated with Coagulopathy among Patients with Acute Pancreatitis. International journal of molecular sciences 2017; 18 DOI: 10.3390/ijms18040753.
  • 128 Kolber W, Kusnierz-Cabala B, Dumnicka P. et al Serum Urokinase-Type Plasminogen Activator Receptor Does Not Outperform C-Reactive Protein and Procalcitonin as an Early Marker of Severity of Acute Pancreatitis. J Clin Med 2018; 7 DOI: 10.3390/jcm7100305.
  • 129 Huang HL, Nie X, Cai B. et al Procalcitonin levels predict acute kidney injury and prognosis in acute pancreatitis: a prospective study. PloS one 2013; 8: e82250 . doi:10.1371/journal.pone.0082250
  • 130 Meisner M. Update on procalcitonin measurements. Ann Lab Med 2014; 34: 263-273 . doi:10.3343/alm.2014.34.4.263
  • 131 Sporek M, Dumnicka P, Gala-Bladzinska A. et al Determination of serum neutrophil gelatinase-associated lipocalin at the early stage of acute pancreatitis. Folia medica Cracoviensia 2016; 56: 5-16
  • 132 Lipinski M, Rydzewska-Rosolowska A, Rydzewski A. et al Urinary neutrophil gelatinase-associated lipocalin as an early predictor of disease severity and mortality in acute pancreatitis. Pancreas 2015; 44: 448-452 . doi:10.1097/MPA.0000000000000282
  • 133 Kolber W, Dumnicka P, Maraj M. et al Does the Automatic Measurement of Interleukin 6 Allow for Prediction of Complications during the First 48h of Acute Pancreatitis?. International journal of molecular sciences 2018; 19 DOI: 10.3390/ijms19061820.
  • 134 Frasquet JL, Saez J, Trigo C. et al [Proteinuria and urinary beta 2-microglobulin as markers of tubular malfunction in the assessment of severity of acute pancreatitis]. Gastroenterologia y hepatologia 2004; 27: 295-299 . doi:10.1016/s0210-5705(03)70463-4
  • 135 Chang CT, Liao HY, Huang WH. et al Early prediction of severe acute pancreatitis by urinary beta-2 microglobulin/saposin B peak ratios on MALDI-TOF. Clin Chim Acta 2015; 440: 115-122 . doi:10.1016/j.cca.2014.11.019
  • 136 Isman FK, Zulfikaroglu B, Isbilen B. et al Copeptin is a predictive biomarker of severity in acute pancreatitis. The American journal of emergency medicine 2013; 31: 690-692 . doi:10.1016/j.ajem.2012.12.016
  • 137 Sang G, Du JM, Chen YY. et al Plasma copeptin levels are associated with prognosis of severe acute pancreatitis. Peptides 2014; 51: 4-8 . doi:10.1016/j.peptides.2013.10.019
  • 138 Marx D, Metzger J, Pejchinovski M. et al Proteomics and Metabolomics for AKI Diagnosis. Semin Nephrol 2018; 38: 63-87 . doi:10.1016/j.semnephrol.2017.09.007
  • 139 Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nature reviews Nephrology 2015; 11: 23-33 . doi:10.1038/nrneph.2014.202
  • 140 Amrouche L, Desbuissons G, Rabant M. et al MicroRNA-146a in Human and Experimental Ischemic AKI: CXCL8-Dependent Mechanism of Action. Journal of the American Society of Nephrology: JASN 2017; 28: 479-493 . doi:10.1681/ASN.2016010045
  • 141 Troth SP, Vlasakova K, Amur S. et al Translational Safety Biomarkers of Kidney Injury. Semin Nephrol 2019; 39: 202-214 . doi:10.1016/j.semnephrol.2018.12.008
  • 142 Xiang H, Tao X, Xia S. et al Targeting MicroRNA Function in Acute Pancreatitis. Frontiers in physiology 2017; 8: 726 . doi:10.3389/fphys.2017.00726
  • 143 Tenner S, Baillie J, DeWitt J. et al American College of Gastroenterology guideline: management of acute pancreatitis. The American journal of gastroenterology 2013; 108: 1400-1415; 1416 . doi:10.1038/ajg.2013.218
  • 144 Eckerwall G, Olin H, Andersson B. et al Fluid resuscitation and nutritional support during severe acute pancreatitis in the past: what have we learned and how can we do better?. Clinical nutrition 2006; 25: 497-504 . doi:10.1016/j.clnu.2005.10.012
  • 145 Ye B, Mao W, Chen Y. et al Aggressive Resuscitation Is Associated with the Development of Acute Kidney Injury in Acute Pancreatitis. Digestive diseases and sciences 2019; 64: 544-552 . doi:10.1007/s10620-018-5328-5
  • 146 Mao EQ, Fei J, Peng YB. et al Rapid hemodilution is associated with increased sepsis and mortality among patients with severe acute pancreatitis. Chinese medical journal 2010; 123: 1639-1644
  • 147 de-Madaria E, Soler-Sala G, Sanchez-Paya J. et al Influence of fluid therapy on the prognosis of acute pancreatitis: a prospective cohort study. The American journal of gastroenterology 2011; 106: 1843-1850 . doi:10.1038/ajg.2011.236
  • 148 Balogh Z, McKinley BA, Holcomb JB. et al Both primary and secondary abdominal compartment syndrome can be predicted early and are harbingers of multiple organ failure. The Journal of trauma 2003; 54: 848-859 ; discussion 859-861. doi:10.1097/01.TA.0000070166.29649.F3
  • 149 Gad MM, Simons-Linares CR. Is aggressive intravenous fluid resuscitation beneficial in acute pancreatitis? A meta-analysis of randomized control trials and cohort studies. World journal of gastroenterology 2020; 26: 1098-1106 . doi:10.3748/wjg.v26.i10.1098
  • 150 Gardner TB, Vege SS, Chari ST. et al Faster rate of initial fluid resuscitation in severe acute pancreatitis diminishes in-hospital mortality. Pancreatology: official journal of the International Association of Pancreatology 2009; 9: 770-776 . doi:10.1159/000210022
  • 151 Gardner TB, Vege SS, Pearson RK. et al Fluid resuscitation in acute pancreatitis. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association 2008; 6: 1070-1076 . doi:10.1016/j.cgh.2008.05.005
  • 152 Herbers U, Trautwein C, Tacke F. et al [Diagnosis and stage-adapted treatment of acute pancreatitis]. Medizinische Klinik, Intensivmedizin und Notfallmedizin 2018; 113: 593-605 . doi:10.1007/s00063-018-0466-2
  • 153 Semler MW, Self WH, Wanderer JP. et al Balanced Crystalloids versus Saline in Critically Ill Adults. The New England journal of medicine 2018; 378: 829-839 . doi:10.1056/NEJMoa1711584
  • 154 Self WH, Semler MW, Wanderer JP. et al Balanced Crystalloids versus Saline in Noncritically Ill Adults. The New England journal of medicine 2018; 378: 819-828 . doi:10.1056/NEJMoa1711586
  • 155 Yunos NM, Bellomo R, Glassford N. et al Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive care medicine 2015; 41: 257-264 . doi:10.1007/s00134-014-3593-0
  • 156 Mao W, Wu J, Zhang H. et al Increase in serum chloride and chloride exposure are associated with acute kidney injury in moderately severe and severe acute pancreatitis patients. Pancreatology: official journal of the International Association of Pancreatology 2019; 19: 136-142 . doi:10.1016/j.pan.2018.11.006
  • 157 Bhoomagoud M, Jung T, Atladottir J. et al Reducing extracellular pH sensitizes the acinar cell to secretagogue-induced pancreatitis responses in rats. Gastroenterology 2009; 137: 1083-1092 . doi:10.1053/j.gastro.2009.05.041
  • 158 Noble MD, Romac J, Vigna SR. et al A pH-sensitive, neurogenic pathway mediates disease severity in a model of post-ERCP pancreatitis. Gut 2008; 57: 1566-1571 . doi:10.1136/gut.2008.148551
  • 159 Colegio OR, Chu NQ, Szabo AL. et al Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513: 559-563 . doi:10.1038/nature13490
  • 160 Iraporda C, Errea A, Romanin DE. et al Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 2015; 220: 1161-1169 . doi:10.1016/j.imbio.2015.06.004
  • 161 Wu BU, Hwang JQ, Gardner TH. et al Lactated Ringer‘s solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association 2011; 9: 710-717 e711 . doi:10.1016/j.cgh.2011.04.026
  • 162 de-Madaria E, Herrera-Marante I, Gonzalez-Camacho V. et al Fluid resuscitation with lactated Ringer’s solution vs normal saline in acute pancreatitis: A triple-blind, randomized, controlled trial. United European gastroenterology journal 2018; 6: 63-72 . doi:10.1177/2050640617707864
  • 163 Zhao G, Zhang JG, Wu HS. et al Effects of different resuscitation fluid on severe acute pancreatitis. World journal of gastroenterology 2013; 19: 2044-2052 . doi:10.3748/wjg.v19.i13.2044
  • 164 Perner A, Haase N, Guttormsen AB. et al Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. The New England journal of medicine 2012; 367: 124-134 . doi:10.1056/NEJMoa1204242
  • 165 Mounzer R, Langmead CJ, Wu BU. et al Comparison of existing clinical scoring systems to predict persistent organ failure in patients with acute pancreatitis. Gastroenterology 2012; 142: 1476-1482 ; quiz e1415-1476. doi:10.1053/j.gastro.2012.03.005
  • 166 Brown A, Orav J, Banks PA. Hemoconcentration is an early marker for organ failure and necrotizing pancreatitis. Pancreas 2000; 20: 367-372 . doi:10.1097/00006676-200005000-00005
  • 167 Papachristou GI, Muddana V, Yadav D. et al Increased serum creatinine is associated with pancreatic necrosis in acute pancreatitis. The American journal of gastroenterology 2010; 105: 1451-1452 . doi:10.1038/ajg.2010.92
  • 168 Rivers E, Nguyen B, Havstad S. et al Early goal-directed therapy in the treatment of severe sepsis and septic shock. The New England journal of medicine 2001; 345: 1368-1377 . doi:10.1056/NEJMoa010307
  • 169 Vege SS, DiMagno MJ, Forsmark CE. et al Initial Medical Treatment of Acute Pancreatitis: American Gastroenterological Association Institute Technical Review. Gastroenterology 2018; 154: 1103-1139 . doi:10.1053/j.gastro.2018.01.031
  • 170 Huber W, Umgelter A, Reindl W. et al Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Critical care medicine 2008; 36: 2348-2354 . doi:10.1097/CCM.0b013e3181809928
  • 171 Sun Y, Lu ZH, Zhang XS. et al The effects of fluid resuscitation according to PiCCO on the early stage of severe acute pancreatitis. Pancreatology: official journal of the International Association of Pancreatology 2015; 15: 497-502 . doi:10.1016/j.pan.2015.06.006
  • 172 Trepte CJ, Bachmann KA, Stork JH. et al The impact of early goal-directed fluid management on survival in an experimental model of severe acute pancreatitis. Intensive care medicine 2013; 39: 717-726 . doi:10.1007/s00134-012-2775-x
  • 173 Huber W, Kemnitz V, Phillip V. et al Outcome prediction, fluid resuscitation, pain management, and antibiotic prophylaxis in severe acute pancreatitis. Intensive care medicine 2015; 41: 2034-2035 . doi:10.1007/s00134-015-4022-8
  • 174 Dellinger RP, Levy MM, Rhodes A. et al Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive care medicine 2013; 39: 165-228 . doi:10.1007/s00134-012-2769-8
  • 175 De Backer D, Biston P, Devriendt J. et al Comparison of dopamine and norepinephrine in the treatment of shock. The New England journal of medicine 2010; 362: 779-789 . doi:10.1056/NEJMoa0907118
  • 176 De Backer D, Aldecoa C, Njimi H. et al Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Critical care medicine 2012; 40: 725-730 . doi:10.1097/CCM.0b013e31823778ee
  • 177 Demiselle J, Fage N, Radermacher P. et al Vasopressin and its analogues in shock states: a review. Annals of intensive care 2020; 10: 9 . doi:10.1186/s13613-020-0628-2
  • 178 Gordon AC, Russell JA, Walley KR. et al The effects of vasopressin on acute kidney injury in septic shock. Intensive care medicine 2010; 36: 83-91 . doi:10.1007/s00134-009-1687-x
  • 179 Gordon AC, Mason AJ, Thirunavukkarasu N. et al Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial. Jama 2016; 316: 509-518 . doi:10.1001/jama.2016.10485
  • 180 Asfar P, Meziani F, Hamel JF. et al High versus low blood-pressure target in patients with septic shock. The New England journal of medicine 2014; 370: 1583-1593 . doi:10.1056/NEJMoa1312173
  • 181 Wilson PG, Manji M, Neoptolemos JP. Acute pancreatitis as a model of sepsis. The Journal of antimicrobial chemotherapy 1998; 41: 51-63 . doi:10.1093/jac/41.suppl_1.51
  • 182 Mazaki T, Ishii Y, Takayama T. Meta-analysis of prophylactic antibiotic use in acute necrotizing pancreatitis. The British journal of surgery 2006; 93: 674-684 . doi:10.1002/bjs.5389
  • 183 de Vries AC, Besselink MG, Buskens E. et al Randomized controlled trials of antibiotic prophylaxis in severe acute pancreatitis: relationship between methodological quality and outcome. Pancreatology: official journal of the International Association of Pancreatology 2007; 7: 531-538 . doi:10.1159/000108971
  • 184 Bagshaw SM, Lapinsky S, Dial S. et al Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive care medicine 2009; 35: 871-881 . doi:10.1007/s00134-008-1367-2
  • 185 Allison MG, Heil EL, Hayes BD. Appropriate Antibiotic Therapy. Emergency medicine clinics of North America 2017; 35: 25-42 . doi:10.1016/j.emc.2016.08.003
  • 186 Luther MK, Timbrook TT, Caffrey AR. et al Vancomycin Plus Piperacillin-Tazobactam and Acute Kidney Injury in Adults: A Systematic Review and Meta-Analysis. Critical care medicine 2018; 46: 12-20 . doi:10.1097/CCM.0000000000002769
  • 187 Brinkmann A, Rohr AC, Koberer A. et al [Therapeutic drug monitoring and individual dosing of antibiotics during sepsis: Modern or just “trendy”?]. Medizinische Klinik, Intensivmedizin und Notfallmedizin 2018; 113: 82-93 . doi:10.1007/s00063-016-0213-5
  • 188 Al-Omran M, Albalawi ZH, Tashkandi MF. et al Enteral versus parenteral nutrition for acute pancreatitis. The Cochrane database of systematic reviews 2010; DOI: 10.1002/14651858.CD002837.
  • 189 Yi F, Ge L, Zhao J. et al Meta-analysis: total parenteral nutrition versus total enteral nutrition in predicted severe acute pancreatitis. Internal medicine 2012; 51: 523-530 . doi:10.2169/internalmedicine.51.6685
  • 190 McCarthy MS, Phipps SC. Special nutrition challenges: current approach to acute kidney injury. Nutrition in clinical practice: official publication of the American Society for Parenteral and Enteral Nutrition 2014; 29: 56-62 . doi:10.1177/0884533613515726
  • 191 Joannidis M, Druml W, Forni LG. et al Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: Expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive care medicine 2017; 43: 730-749 . doi:10.1007/s00134-017-4832-y
  • 192 Wu BU, Batech M, Quezada M. et al Dynamic Measurement of Disease Activity in Acute Pancreatitis: The Pancreatitis Activity Scoring System. The American journal of gastroenterology 2017; 112: 1144-1152 . doi:10.1038/ajg.2017.114
  • 193 Buxbaum J, Quezada M, Chong B. et al The Pancreatitis Activity Scoring System predicts clinical outcomes in acute pancreatitis: findings from a prospective cohort study. The American journal of gastroenterology 2018; 113: 755-764 . doi:10.1038/s41395-018-0048-1
  • 194 Maluso P, Olson J, Sarani B. Abdominal Compartment Hypertension and Abdominal Compartment Syndrome. Critical care clinics 2016; 32: 213-222 . doi:10.1016/j.ccc.2015.12.001
  • 195 Working Group IAPAPAAPG. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology: official journal of the International Association of Pancreatology 2013; 13: e1-15 . doi:10.1016/j.pan.2013.07.063
  • 196 Petejova N, Martinek A. Acute kidney injury following acute pancreatitis: A review. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 2013; 157: 105-113 . doi:10.5507/bp.2013.048
  • 197 Bagshaw SM, Wald R. Strategies for the optimal timing to start renal replacement therapy in critically ill patients with acute kidney injury. Kidney international 2017; 91: 1022-1032 . doi:10.1016/j.kint.2016.09.053
  • 198 Seabra VF, Balk EM, Liangos O. et al Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. American journal of kidney diseases: the official journal of the National Kidney Foundation 2008; 52: 272-284 . doi:10.1053/j.ajkd.2008.02.371
  • 199 Karvellas CJ, Farhat MR, Sajjad I. et al A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Critical care 2011; 15: R72 . doi:10.1186/cc10061
  • 200 Gaudry S, Hajage D, Schortgen F. et al Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit. The New England journal of medicine 2016; 375: 122-133 . doi:10.1056/NEJMoa1603017
  • 201 Zarbock A, Kellum JA, Schmidt C. et al Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients With Acute Kidney Injury: The ELAIN Randomized Clinical Trial. Jama 2016; 315: 2190-2199 . doi:10.1001/jama.2016.5828
  • 202 Barbar SD, Clere-Jehl R, Bourredjem A. et al Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis. The New England journal of medicine 2018; 379: 1431-1442 . doi:10.1056/NEJMoa1803213
  • 203 Gaudry S, Hajage D, Schortgen F. et al Timing of Renal Support and Outcome of Septic Shock and Acute Respiratory Distress Syndrome. A Post Hoc Analysis of the AKIKI Randomized Clinical Trial. American journal of respiratory and critical care medicine 2018; 198: 58-66 . doi:10.1164/rccm.201706-1255OC
  • 204 Investigators S-A, Canadian Critical Care Trials Group tA, New Zealand Intensive Care Society Clinical Trials Group tUKCCRGtCNTN et al. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. The New England journal of medicine 2020; 383: 240-251 . doi:10.1056/NEJMoa2000741
  • 205 Xu J, Cui Y, Tian X. Early Continuous Veno-Venous Hemofiltration Is Effective in Decreasing Intra-Abdominal Pressure and Serum Interleukin-8 Level in Severe Acute Pancreatitis Patients with Abdominal Compartment Syndrome. Blood purification 2017; 44: 276-282 . doi:10.1159/000480223
  • 206 Liu C, Li M, Cao S. et al Effects of HV-CRRT on PCT, TNF-alpha, IL-4, IL-6, IL-8 and IL-10 in patients with pancreatitis complicated by acute renal failure. Experimental and therapeutic medicine 2017; 14: 3093-3097 . doi:10.3892/etm.2017.4843
  • 207 Kogelmann K, Jarczak D, Scheller M. et al Hemoadsorption by CytoSorb in septic patients: a case series. Critical care 2017; 21: 74 . doi:10.1186/s13054-017-1662-9
  • 208 Friesecke S, Stecher SS, Gross S. et al Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: a prospective single-center study. Journal of artificial organs: the official journal of the Japanese Society for Artificial Organs 2017; 20: 252-259 . doi:10.1007/s10047-017-0967-4
  • 209 Schadler D, Pausch C, Heise D. et al The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PloS one 2017; 12: e0187015 . doi:10.1371/journal.pone.0187015
  • 210 Huber W, Algul H, Lahmer T. et al Pancreatitis cytosorbents (CytoSorb) inflammatory cytokine removal: A Prospective Study (PACIFIC). Medicine 2019; 98: e13044 . doi:10.1097/MD.0000000000013044
  • 211 Xie H, Ji D, Gong D. et al Continuous veno venous hemofiltration in treatment of acute necrotizing pancreatitis. Chinese medical journal 2003; 116: 549-553
  • 212 Wang H, Li WQ, Zhou W. et al Clinical effects of continuous high volume hemofiltration on severe acute pancreatitis complicated with multiple organ dysfunction syndrome. World journal of gastroenterology 2003; 9: 2096-2099 . doi:10.3748/wjg.v9.i9.2096
  • 213 Yang ZH, Yang J, Wang YJ. [Protective effect of continuous veno-venous hemofiltration on tissue and organ damage in patients with severe acute pancreatitis]. Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue 2004; 16: 232-234
  • 214 Oda S, Hirasawa H, Shiga H. et al Management of intra-abdominal hypertension in patients with severe acute pancreatitis with continuous hemodiafiltration using a polymethyl methacrylate membrane hemofilter. Therapeutic apheresis and dialysis: official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy 2005; 9: 355-361 . doi:10.1111/j.1744-9987.2005.00297.x
  • 215 Jiang HL, Xue WJ, Li DQ. et al Influence of continuous veno-venous hemofiltration on the course of acute pancreatitis. World journal of gastroenterology 2005; 11: 4815-4821 . doi:10.3748/wjg.v11.i31.4815
  • 216 Pupelis G, Plaudis H, Grigane A. et al Continuous veno-venous haemofiltration in the treatment of severe acute pancreatitis: 6-year experience. HPB: the official journal of the International Hepato Pancreato Biliary Association 2007; 9: 295-301 . doi:10.1080/13651820701329225
  • 217 Chen ZH, Liu ZH, Yu C. et al Endothelial dysfunction in patients with severe acute pancreatitis: improved by continuous blood purification therapy. The International journal of artificial organs 2007; 30: 393-400
  • 218 Yu C, Liu ZH, Chen ZH. et al Improvement of monocyte function and immune homeostasis by high volume continuous venovenous hemofiltration in patients with severe acute pancreatitis. The International journal of artificial organs 2008; 31: 882-890 . doi:10.1177/039139880803101004
  • 219 Zhang J, Yuan C, Hua G. et al Early gut barrier dysfunction in patients with severe acute pancreatitis: attenuated by continuous blood purification treatment. The International journal of artificial organs 2010; 33: 706-715
  • 220 Gong D, Zhang P, Ji D. et al Improvement of immune dysfunction in patients with severe acute pancreatitis by high-volume hemofiltration: a preliminary report. The International journal of artificial organs 2010; 33: 22-29
  • 221 Yang C, Guanghua F, Wei Z. et al Combination of hemofiltration and peritoneal dialysis in the treatment of severe acute pancreatitis. Pancreas 2010; 39: 16-19 . doi:10.1097/MPA.0b013e3181bab38b
  • 222 Zhu Y, Yuan J, Zhang P. et al Adjunctive continuous high-volume hemofiltration in patients with acute severe pancreatitis: a prospective nonrandomized study. Pancreas 2011; 40: 109-113 . doi:10.1097/MPA.0b013e3181f83019
  • 223 Xia L, Qian KJ, Zeng ZG. et al [A clinical study of early continuous high-volume-hemofiltration in the treatment of severe acute pancreatitis]. Zhonghua nei ke za zhi 2012; 51: 871-874
  • 224 Pupelis G, Plaudis H, Zeiza K. et al Early continuous veno-venous haemofiltration in the management of severe acute pancreatitis complicated with intra-abdominal hypertension: retrospective review of 10 years’ experience. Annals of intensive care 2012; 2 (Suppl. 01) S21 . doi:10.1186/2110-5820-2-S1-S21
  • 225 Chu LP, Zhou JJ, Yu YF. et al Clinical effects of pulse high-volume hemofiltration on severe acute pancreatitis complicated with multiple organ dysfunction syndrome. Therapeutic apheresis and dialysis: official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy 2013; 17: 78-83 . doi:10.1111/j.1744-9987.2012.01104.x
  • 226 He WH, Yu M, Zhu Y. et al Emergent Triglyceride-lowering Therapy With Early High-volume Hemofiltration Against Low-Molecular-Weight Heparin Combined With Insulin in Hypertriglyceridemic Pancreatitis: A Prospective Randomized Controlled Trial. Journal of clinical gastroenterology 2016; 50: 772-778 . doi:10.1097/MCG.0000000000000552
  • 227 Abulimiti A, Husaiyin A, Sailai Y. Evaluation of HVHF for the treatment of severe acute pancreatitis accompanying MODS. Medicine 2018; 97: e9417 . doi:10.1097/MD.0000000000009417
  • 228 Guo J, Huang W, Yang XN. et al Short-term continuous high-volume hemofiltration on clinical outcomes of severe acute pancreatitis. Pancreas 2014; 43: 250-254. doi:10.1097/01.mpa.0000437321.06857.fc
  • 229 Wang G, Liu H, Xu L. et al Effect of Laparoscopic Peritoneal Lavage and Drainage and Continuous Venovenous Diahemofiltration on Severe Acute Pancreatitis. J Laparoendosc Adv Surg Tech A 2017; 27: 1145-1150 . doi:10.1089/lap.2016.0637
  • 230 He C, Zhang L, Shi W. et al Coupled plasma filtration adsorption combined with continuous veno-venous hemofiltration treatment in patients with severe acute pancreatitis. Journal of clinical gastroenterology 2013; 47: 62-68 . doi:10.1097/MCG.0b013e318266f455
  • 231 Sun S, He L, Bai M. et al High-volume hemofiltration plus hemoperfusion for hyperlipidemic severe acute pancreatitis: a controlled pilot study. Ann Saudi Med 2015; 35: 352-358 . doi:10.5144/0256-4947.2015.352
  • 232 Guo H, Suo DW, Zhu HP. et al Early blood purification therapy of severe acute pancreatitis complicated by acute lung injury. Eur Rev Med Pharmacol Sci 2016; 20: 873-878
  • 233 Digvijay K, Neri M, Fan W. et al International Survey on the Management of Acute Kidney Injury and Continuous Renal Replacement Therapies: Year 2018. Blood purification 2019; 47: 113-119 . doi:10.1159/000493724
  • 234 Fealy N, Aitken L, Toit E. et al Continuous renal replacement therapy: current practice in Australian and New Zealand intensive care units. Critical care and resuscitation: journal of the Australasian Academy of Critical Care Medicine 2015; 17: 83-91
  • 235 Warzecha Z, Sendur P, Ceranowicz P. et al Therapeutic Effect of Low Doses of Acenocoumarol in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats. International journal of molecular sciences 2017; 18 DOI: 10.3390/ijms18040882.
  • 236 Alagozlu H, Cindoruk M, Karakan T. et al Heparin and insulin in the treatment of hypertriglyceridemia-induced severe acute pancreatitis. Digestive diseases and sciences 2006; 51: 931-933 . doi:10.1007/s10620-005-9006-z
  • 237 Rabenstein T, Roggenbuck S, Framke B. et al Complications of endoscopic sphincterotomy: can heparin prevent acute pancreatitis after ERCP?. Gastrointest Endosc 2002; 55: 476-483 . doi:10.1067/mge.2002.122616
  • 238 Ceranowicz P, Dembinski A, Warzecha Z. et al Protective and therapeutic effect of heparin in acute pancreatitis. J Physiol Pharmacol 2008; 59 (Suppl. 04) 103-125
  • 239 Badhal SS, Sharma S, Saraya A. et al Prognostic significance of D-dimer, natural anticoagulants and routine coagulation parameters in acute pancreatitis. Trop Gastroenterol 2012; 33: 193-199 . doi:10.7869/tg.2012.48
  • 240 Ke L, Ni HB, Tong ZH. et al D-dimer as a marker of severity in patients with severe acute pancreatitis. J Hepatobiliary Pancreat Sci 2012; 19: 259-265 . doi:10.1007/s00534-011-0414-5
  • 241 Oudemans-van Straaten HM, Kellum JA, Bellomo R. Clinical review: anticoagulation for continuous renal replacement therapy--heparin or citrate?. Critical care 2011; 15: 202 . doi:10.1186/cc9358
  • 242 Gattas DJ, Rajbhandari D, Bradford C. et al A Randomized Controlled Trial of Regional Citrate Versus Regional Heparin Anticoagulation for Continuous Renal Replacement Therapy in Critically Ill Adults. Critical care medicine 2015; 43: 1622-1629 . doi:10.1097/CCM.0000000000001004
  • 243 Tolwani A, Wille KM. Regional citrate anticoagulation for continuous renal replacement therapy: the better alternative?. American journal of kidney diseases: the official journal of the National Kidney Foundation 2012; 59: 745-747 . doi:10.1053/j.ajkd.2012.03.003
  • 244 Dirkes S, Wonnacott R. Continuous Renal Replacement Therapy and Anticoagulation: What Are the Options?. Critical care nurse 2016; 36: 34-41 . doi:10.4037/ccn2016623
  • 245 Meersch M, Kullmar M, Wempe C. et al Regional citrate versus systemic heparin anticoagulation for continuous renal replacement therapy in critically ill patients with acute kidney injury (RICH) trial: study protocol for a multicentre, randomised controlled trial. BMJ open 2019; 9: e024411 . doi:10.1136/bmjopen-2018-024411