Semin Liver Dis 2009; 29(4): 393-399
DOI: 10.1055/s-0029-1240008
© Thieme Medical Publishers

Biomarkers for the Diagnosis and Management of Drug-Induced Liver Injury

Paul B. Watkins1 , 2
  • 1Verne S. Caviness Distinguished Professor of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • 2Director, The Hamner–UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
Further Information

Publication History

Publication Date:
13 October 2009 (online)

ABSTRACT

There is a pressing need for new clinical tests that will help physicians distinguish drug-induced liver injury (DILI) from other, more common causes of liver injury, and that can identify which specific drug is the culprit when DILI occurs in the setting of polypharmacy. In situations where there are few alternative treatments, new tests are needed that can differentiate patients with DILI who would develop progressive liver injury if treatment is not stopped from patients who can safely continue drug therapy via “adaptation.” Although there has been little progress in developing and validating such tests, new insights into the mechanisms underlying DILI suggest that the desired biomarkers probably exist and can be discovered through the application of new technologies for blood and possibly urine analyses. Such discovery efforts will require the establishment of well-annotated serum and urine banks from prospective clinical trials of drugs capable of causing progressive liver injury.

REFERENCES

  • 1 Biomarkers Definitions Working Group . Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.  Clin Pharmacol Ther. 2001;  69(3) 89-95
  • 2 Watkins P B, Seeff L B. Drug-induced liver injury: summary of a single topic clinical research conference.  Hepatology. 2006;  43(3) 618-631
  • 3 Green R M, Flamm S. AGA technical review on the evaluation of liver chemistry tests.  Gastroenterology. 2002;  123(4) 1367-1384
  • 4 Sayuk G S, Elwing J E, Lisker-Melman M. Hepatic glycogenosis: an underrecognized source of abnormal liver function tests?.  Dig Dis Sci. 2007;  52(4) 936-938
  • 5 Olsson R, Wesslau C, William-Olsson T, Zettergren L. Elevated aminotransferases and alkaline phosphatases in unstable diabetes mellitus without ketoacidosis or hypoglycemia.  J Clin Gastroenterol. 1989;  11(5) 541-545
  • 6 Rautou P E, Cazals-Hatem D, Moreau R et al.. Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy.  Gastroenterology. 2008;  135(3) 840-848, 848.e1–e3
  • 7 Browning J D, Szczepaniak L S, Dobbins R et al.. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity.  Hepatology. 2004;  40(6) 1387-1395
  • 8 Thulin P, Rafter I, Stockling K et al.. PPARalpha regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes.  Toxicol Appl Pharmacol. 2008;  231(1) 1-9
  • 9 Watkins P B, Zimmerman H J, Knapp M J, Gracon S I, Lewis K W. Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease.  JAMA. 1994;  271(13) 992-998
  • 10 Kaplowitz N. Idiosyncratic drug hepatotoxicity.  Nat Rev Drug Discov. 2005;  4(6) 489-499
  • 11 Monreal M, Lafoz E, Salvador R, Roncales J, Navarro A. Adverse effects of three different forms of heparin therapy: thrombocytopenia, increased transaminases, and hyperkalaemia.  Eur J Clin Pharmacol. 1989;  37(4) 415-418
  • 12 Mitchell J R, Long M W, Thorgeirsson U P, Jollow D J. Acetylation rates and monthly liver function tests during one year of isoniazid preventive therapy.  Chest. 1975;  68(2) 181-190
  • 13 Watkins P B, Whitcomb R W. Hepatic dysfunction associated with troglitazone.  N Engl J Med. 1998;  338(13) 916-917
  • 14 Lee W M, Larrey D, Olsson R et al.. Hepatic findings in long-term clinical trials of ximelagatran.  Drug Saf. 2005;  28(4) 351-370
  • 15 Torti V R, Cobb A J, Everitt J I, Marshall M W, Boorman G A, Butterworth B E. Nephrotoxicity and hepatotoxicity induced by inhaled bromodichloromethane in wild-type and p53-heterozygous mice.  Toxicol Sci. 2001;  64(2) 269-280
  • 16 Shayiq R M, Roberts D W, Rothstein K et al.. Repeat exposure to incremental doses of acetaminophen provides protection against acetaminophen-induced lethality in mice: an explanation for high acetaminophen dosage in humans without hepatic injury.  Hepatology. 1999;  29(2) 451-463
  • 17 Aleksunes L M, Campion S N, Goedken M J, Manautou J E. Acquired resistance to acetaminophen hepatotoxicity is associated with induction of multidrug resistance-associated protein 4 (Mrp4) in proliferating hepatocytes.  Toxicol Sci. 2008;  104(2) 261-273
  • 18 Ros J E, Libbrecht L, Geuken M, Jansen P L, Roskams T A. High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease.  J Pathol. 2003;  200(5) 553-560
  • 19 Zimmerman H J. The spectrum of hepatotoxicity.  Perspect Biol Med. 1968;  12(1) 135-161
  • 20 Björnsson E, Olsson R. Outcome and prognostic markers in severe drug-induced liver disease.  Hepatology. 2005;  42(2) 481-489
  • 21 Andrade R J, Lucena M I, Kaplowitz N et al.. Outcome of acute idiosyncratic drug-induced liver injury: long-term follow-up in a hepatotoxicity registry.  Hepatology. 2006;  44(6) 1581-1588
  • 22 Pachkoria K, Lucena M I, Molokhia M et al.. Genetic and molecular factors in drug-induced liver injury: a review.  Curr Drug Saf. 2007;  2(2) 97-112
  • 23 Daly A K, Donaldson P T, Bhatnagar P DILIGEN Study et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin.  Nat Genet. 2009;  41(7) 816-819
  • 24 Hoofnagle J H. Drug-induced liver injury network (DILIN).  Hepatology. 2004;  40(4) 773
  • 25 Holden A. Detecting and Investigating Drug Induced Adverse Events … the International Serious Adverse Event Consortium's Experience to Date. 2008. Available at: http://www.fda.gov/downloads/Drugs/ScienceResearch/ResearchAreas/ucm077482.pdf Accessed July 10, 2009
  • 26 Webster P A, Roberts D W, Benson R W, Kearns G L. Acetaminophen toxicity in children: diagnostic confirmation using a specific antigenic biomarker.  J Clin Pharmacol. 1996;  36(5) 397-402
  • 27 Davern II T J, James L P, Hinson J A Acute Liver Failure Study Group et al. Measurement of serum acetaminophen-protein adducts in patients with acute liver failure.  Gastroenterology. 2006;  130(3) 687-694
  • 28 James L P, Capparelli E V, Simpson P M Network of Pediatric Pharmacology Research Units, National Institutes of Child Health and Human Development et al. Acetaminophen-associated hepatic injury: evaluation of acetaminophen protein adducts in children and adolescents with acetaminophen overdose.  Clin Pharmacol Ther. 2008;  84(6) 684-690
  • 29 James L P, Letzig L, Simpson P M et al.. Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure.  Drug Metab Dispos. 2009;  37(8) 1779-1784
  • 30 Hinson J A, Reid A B, McCullough S S, James L P. Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition.  Drug Metab Rev. 2004;  36(3-4) 805-822
  • 31 Cohen S D, Pumford N R, Khairallah E A et al.. Selective protein covalent binding and target organ toxicity.  Toxicol Appl Pharmacol. 1997;  143(1) 1-12
  • 32 Antoine D J, Williams D P, Park B K. Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science.  Expert Opin Drug Metab Toxicol. 2008;  4(11) 1415-1427
  • 33 Pichler W J, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity.  Allergy. 2004;  59(8) 809-820
  • 34 Merk H F. Diagnosis of drug hypersensitivity: lymphocyte transformation test and cytokines.  Toxicology. 2005;  209(2) 217-220
  • 35 Schreiber J, Zissel G, Greinert U, Schlaak M, Müller-Quernheim J. Lymphocyte transformation test for the evaluation of adverse effects of antituberculous drugs.  Eur J Med Res. 1999;  4(2) 67-71
  • 36 Maria V A, Victorino R M. Diagnostic value of specific T cell reactivity to drugs in 95 cases of drug induced liver injury.  Gut. 1997;  41(4) 534-540
  • 37 Kindmark A, Jawaid A, Harbron C G et al.. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis.  Pharmacogenomics J. 2008;  8(3) 186-195
  • 38 Hirata K, Takagi H, Yamamoto M et al.. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study.  Pharmacogenomics J. 2008;  8(1) 29-33
  • 39 Watkins P B. Antimicrosomal antibodies: what are they telling us?.  Hepatology. 1991;  13(2) 385-387
  • 40 Beaune P H, Lecoeur S, Bourdi M et al.. Anti-cytochrome P450 autoantibodies in drug-induced disease.  Eur J Haematol Suppl. 1996;  60 89-92
  • 41 Robin M A, Le Roy M, Descatoire V, Pessayre D. Plasma membrane cytochromes P450 as neoantigens and autoimmune targets in drug-induced hepatitis.  J Hepatol. 1997;  26(Suppl 1) 23-30
  • 42 Obermayer-Straub P, Strassburg C P, Manns M P. Target proteins in human autoimmunity: cytochromes P450 and UDP- glucuronosyltransferases.  Can J Gastroenterol. 2000;  14(5) 429-439
  • 43 Manns M P, Obermayer-Straub P. Cytochromes P450 and uridine triphosphate-glucuronosyltransferases: model autoantigens to study drug-induced, virus-induced, and autoimmune liver disease.  Hepatology. 1997;  26(4) 1054-1066
  • 44 Homberg J C, Andre C, Abuaf N. A new anti-liver-kidney microsome antibody (anti-LKM2) in tienilic acid-induced hepatitis.  Clin Exp Immunol. 1984;  55(3) 561-570
  • 45 Bourdi M, Larrey D, Nataf J et al.. Anti-liver endoplasmic reticulum autoantibodies are directed against human cytochrome P-450IA2. A specific marker of dihydralazine-induced hepatitis.  J Clin Invest. 1990;  85(6) 1967-1973
  • 46 Nguyen C, Rose N R, Njoku D B. Trifluoroacetylated IgG4 antibodies in a child with idiosyncratic acute liver failure after first exposure to halothane.  J Pediatr Gastroenterol Nutr. 2008;  47(2) 199-202
  • 47 Beaune P, Dansette P M, Mansuy D et al.. Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug.  Proc Natl Acad Sci U S A. 1987;  84(2) 551-555
  • 48 Stoevesandt O, Taussig M J, He M. Protein microarrays: high-throughput tools for proteomics.  Expert Rev Proteomics. 2009;  6(2) 145-157
  • 49 McKenzie R, Fried M W, Sallie R et al.. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B.  N Engl J Med. 1995;  333(17) 1099-1105
  • 50 Dykens J A, Jamieson J D, Marroquin L D et al.. In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone.  Toxicol Sci. 2008;  103(2) 335-345
  • 51 Xu J J, Henstock P V, Dunn M C, Smith A R, Chabot J R, de Graaf D. Cellular imaging predictions of clinical drug-induced liver injury.  Toxicol Sci. 2008;  105(1) 97-105
  • 52 Nicholson J K, Lindon J C. Systems biology: Metabonomics.  Nature. 2008;  455(7216) 1054-1056
  • 53 Clayton T A, Lindon J C, Cloarec O et al.. Pharmaco-metabonomic phenotyping and personalized drug treatment.  Nature. 2006;  440(7087) 1073-1077
  • 54 Cederbrant K E. Systems biology approach to ximelagatran injury. 2009. Available at: http://www.aasld.org/conferences/educationtraining/Documents/Hepatoxicity%20Slides/Cederbrant.pdf Accessed July 10, 2009
  • 55 O'Connell T. The application of metabolomics to acetaminophen-induced liver injury in humans. 2009. Available at: http://www.aasld.org/conferences/educationtraining/Documents/Hepatoxicity%20Slides/Oconnell.pdf Accessed July 10, 2009
  • 56 Blomme E A, Yang Y, Waring J F. Use of toxicogenomics to understand mechanisms of drug-induced hepatotoxicity during drug discovery and development.  Toxicol Lett. 2009;  186(1) 22-31
  • 57 Bushel P R, Heinloth A N, Li J et al.. Blood gene expression signatures predict exposure levels.  Proc Natl Acad Sci U S A. 2007;  104(46) 18211-18216
  • 58 Wang K, Zhang S, Marzolf B et al.. Circulating microRNAs, potential biomarkers for drug-induced liver injury.  Proc Natl Acad Sci U S A. 2009;  106(11) 4402-4407
  • 59 Miyamoto M, Yanai M, Ookubo S, Awasaki N, Takami K, Imai R. Detection of cell-free, liver-specific mRNAs in peripheral blood from rats with hepatotoxicity: a potential toxicological biomarker for safety evaluation.  Toxicol Sci. 2008;  106(2) 538-545
  • 60 Nolan C M, Goldberg S V, Buskin S E. Hepatotoxicity associated with isoniazid preventive therapy: a 7-year survey from a public health tuberculosis clinic.  JAMA. 1999;  281(11) 1014-1018
  • 61 Institute of Medicine. Accelerating the development of biomarkers for drug safety: workshop summary. Available at: http://www.iom.edu/CMS/3740/24155/70596.aspx Accessed July 10, 2009

Paul B WatkinsM.D. 

Director, The Hamner–UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences

Six Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709

Email: pbwatkins@med.unc.edu

    >