Int J Sports Med 1999; 20(7): 464-469
DOI: 10.1055/s-1999-8833
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

Association of Physical Fitness With LDL and HDL Subfractions in Young Healthy Men

 M. Halle,  A. Berg,  M. W. Baumstark,  J. Keul
  • Centre for Internal Medicine, Department of Prevention, Rehabilitation, and Sports Medicine, Freiburg University Hospital, Germany
Further Information

Publication History

Publication Date:
31 December 1999 (online)

A dyslipoproteinemia of increased concentrations of small, dense LDL particles and reduced HDL2 cholesterol has shown to be associated with coronary heart disease (CHD). In contrast, an increase in physical fitness and a reduction of body mass index (BMI) improve the lipoprotein profile and reduce the incidence of cardiovascular events. The association of physical exercise, physical fitness, and body weight with an atherogenic lipoprotein subfraction profile has been investigated before in obese subjects, but the relationship is unknown in a healthy non-obese population without insulin resistance or CHD. Therefore, a detailed lipoprotein subfraction profile of 3 HDL and 6 LDL subfractions was determined in 125 healthy men (26 ± 5 years). Physical fitness (maximal oxygen consumption, V˙O2max) was assessed by ergometry and physical activity by questionnaire. Those men with the lowest physical fitness (V˙O2max < 40 ml/kg/min) and the lowest physical activity score had a significantly less favourable lipoprotein subfraction profile of increased concentration of small, dense LDL particles (d: > 1.044 g/ml) and reduced HDL2a cholesterol than those with a V˙O2max > 50 ml/kg/min. Multivariate regression analysis revealed that concentrations of small, dense LDL particles were primarily determined by BMI whereas HDL2a cholesterol and apolipoprotein A-I were primarily determined by physical fitness. These findings underline the relationship between a good physical fitness, a low body weight, and a favourable lipoprotein subfraction profile even in a healthy young male population.

References

  • 1 Assmann G, Cullen P, Schulte H. The Munster Heart Study (PROCAM). Results of follow-up at 8 years.  Eur Heart J. 1998;  19 (A) 11
  • 2 Austin M A, King M C, Vranizan K, Krauss R M. Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease risk.  Circulation. 1990;  82 495-506
  • 3 Austin M A, King M C, Vranizan K M, Newman B, Krauss R M. Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis.  Am J Hum Genet. 1988;  43 838-846
  • 4 Auwerx J H, Marzetta C A, Hokanson J E, Brunzell J D. Large buoyant LDL-like particles in hepatic lipase deficiency.  Arterioscler Thromb. 1989;  9 319-325
  • 5 Basha B J, Sowers J R. Atherosclerosis: an update. (Review).  Am Heart J. 1996;  131 1192-1202
  • 6 Baumstark M W, Kreutz W, Berg A, Frey I, Keul J. Structure of human low-density lipoprotein subfractions, determined by X-ray small-angle scattering.  Biochim Biophys Acta. 1990;  1037 48-57
  • 7 Berg A, Frey I, Baumstark M W, Halle M, Keul J. Physical activity and lipoprotein lipid disorders.  Sports Med. 1994;  17 6-21
  • 8 Berg A, Halle M, Franz I, Keul J. Physical activity and lipoprotein metabolism: Epidemiological evidence and clinical trials.  Eur J Med Res. 1997;  2 259-264
  • 9 Berg A, Jakob E, Lehmann M, Dickhuth H H, Huber G, Keul J. Aktuelle Aspekte der modernen Ergometrie.  Pneumologie. 1990;  44 2-13
  • 10 Blair S N, Kohl H W, Barlow C, Paffenbarger R S, Gibbons L W, Macera C A. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men.  JAMA. 1995;  273 1093-1098
  • 11 Blair S N, Kohl H W, Paffenbarger R S , Clark D G, Cooper K H, Gibbons L W. Physical fitness and all-cause mortality. A prospective study of healthy men and women.  JAMA. 1989;  262 2395-2401
  • 12 Bray G A. Complications of obesity.  Ann Intern Med. 1985;  103 1052-1062
  • 13 Campos H, Dreon D M, Krauss R M. Associations of hepatic and lipoprotein lipase activities with changes in dietary composition and low density lipoprotein subclasses.  J Lipid Res. 1995;  36 462-472
  • 14 Després J P, Lamarche B. Low-intensity endurance exercise training, plasma lipoproteins and the risk of coronary heart disease.  J Intern Med. 1994;  236 7-22
  • 15 Devlin J T. Effects of exercise on insulin sensitivity in humans.  Diabetes Care. 1992;  15 (4) 1690-1693
  • 16 Ekelund L G, Haskell W L, Johnson J L, Whaley F S, Criqui M H, Sheps D S. Physical fitness as a predictor of cardiovascular mortality in asymptomatic north American men. The Lipid Research Clinic mortality follow-up study.  N Engl J Med. 1988;  319 1379-1384
  • 17 Gardner C D, Fortmann S P, Krauss R M. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women.  JAMA. 1996;  276 875-881
  • 18 Griffin B A, Freeman D J, Tait G W, Thomson J, Caslake M J, Packard C J, Shepherd J. Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart disease risk.  Atherosclerosis. 1994;  106 241-253
  • 19 Halle M, Berg A, Baumstark M W, Keul J. LDL-Subfraktionen und koronare Herzerkrankung - eine Übersicht.  Z Kardiol. 1998;  87 317-330
  • 20 Halle M, Berg A, Frey I, König D, Keul J, Baumstark M W. Relationship between obesity and concentration and composition of low-density lipoprotein subfractions in normoinsulinemic men.  Metabolism. 1995;  44 1384-1390
  • 21 Halle M, Berg A, Garwers U, Baumstark M W, Knisel W, Keul J. Influence of 4 weeks' intervention by exercise and diet on LDL subfractions in obese men with type II diabetes mellitus.  Metabolism. 1999;  48 641-644
  • 22 Halle M, Berg A, König D, Keul J, Baumstark M W. Differences in concentration and composition of LDL subfraction particles in trained and sedentary hypercholesterolemic men.  Metabolism. 1997;  46 186-191
  • 23 Hein H O, Suadicani P, Gyntelberg F. Physical fitness or physical activity as a predictor of ischaemic heart disease? A 17-year follow-up in the Copenhagen Male Study.  J Intern Med. 1992;  232 471-479
  • 24 Holm S. A simple sequential rejective multiple test procedure.  Scand J Statist. 1979;  6 65-70
  • 25 Jansen H, Hop W, Van Tol A, Bruschke A V, Birkenhager J C. Hepatic lipase and lipoprotein lipase are not major determinants of the low density lipoprotein subclass pattern in human subjects with coronary heart disease.  Atherosclerosis. 1994;  107 45-54
  • 26 Kasim S E, Darga L L, Holden J H, Khilnani S, Patton S, Jen K L, Lucas C P. Relationships between the amount of weight loss and post-heparin lipoprotein lipase activity in patients with type II diabetes.  Int J Obesity. 1991;  15 833-840
  • 27 Kiens B, Lithell H. Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle.  J Clin Invest. 1989;  83 558-564
  • 28 Knott T J, Pease R J, Powell L M, Wallis S C, Rall S CJ, Innerarity T L, Blackhart B, Taylor W H, Marcel Y, Milne R, Johnson D, Fuller M, Losis A J, McCarthy B J, Mahley R W, Levy-Wilson B, Scott J. Complete protein sequence and identification of structural domains of human apoliprotein B.  Nature. 1986;  323 734-738
  • 29 Krauss R M. Dense low density lipoproteins and coronary artery disease. (Review).  Am J Cardiol. 1995;  75 53
  • 30 Lakka T A, Venäläinen J M, Rauramaa R, Salonen R, Tuomilehto J, Salonen J T. Relation of leisure-time activity and cardiorespiratory fitness to the risk of acute myocardial infarction in men.  N Engl J Med. 1994;  330 1549-1554
  • 31 Lamarche B, Tchernof A, Moorjani S, Cantin B, Dagenais G R, Lupien P J, Després J P. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men.  Circulation. 1997;  95 69-75
  • 32 Lindgren F T. Preparative ultracentrifugal laboratory procedures and suggestions for lipoprotein analysis. In: Perkins EG (ed) Analysis of lipids and lipoproteins. Champain, III.; American Oil Chemists' Society. 1975: 204-224
  • 33 Packard C J, Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism.  Aterioscler Thromb Vasc Biol. 1997;  17 3542-3556
  • 34 Paffenbarger R S, Hyde R T, Wing A L, Lee I M, Jung D L, Kampert J B. The association of changes in physical activity level and other lifestyle characteristics with mortality among men.  N Engl J Med. 1993;  328 538-545
  • 35 Sandvik L, Erikssen J, Thaulow E, Erikksen G, Mundal R, Rodahl K. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men.  N Engl J Med. 1993;  328 533-537
  • 36 Seip R L, Moulin P, Cocke T, Tall A, Kohrt W M, Mankowitz K, Semenkovich C F, Ostlund R, Schonfeld G. Exercise training decreases plasma cholesteryl ester transfer protein.  Arterioscler Thromb. 1993;  13 1359-1367
  • 37 Shima K, Shi K, Sano T, Iwami T, Mizuno A, Noma Y. Is exercise training effective in preventing diabetes mellitus in the Otsuka-Long-Evans-Tokushima fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus?.  Metabolism. 1993;  42 971-977
  • 38 Tran Z V, Weltman A. Differential effects of exercise on serum lipid and lipoprotein levels seen with changes in body weight. A meta-analysis.  JAMA. 1985;  254 919-924
  • 39 Watson T D, Caslake M J, Freeman D J, Griffin B A, Hinnie J, Packard C J, Shepherd J. Determinants of LDL subfraction distribution and concentrations in young normolipidemic subjects.  Aterioscler Thromb. 1994;  14 902-910
  • 40 Williams P T, Krauss R M, Stefanick M L, Vranizan K M, Wood P D. Effects of low-fat diet, calorie restriction, and running on lipoprotein subfraction concentrations in moderately overweight men.  Metabolism. 1994;  43 655-663
  • 41 Williams P T, Krauss R M, Vranizan K M, Albers J J, Wood P DS. Effects of weight-loss by exercise and by diet on apolipoproteins A-I and A-II and the particle-size distribution of high-density lipoproteins in men.  Metabolism. 1992;  41 441-449
  • 42 Williams P T, Krauss R M, Vranizan K M, Wood P DS. Changes in lipoprotein subfractions during diet-induced and exercise-induced weight loss in moderately overweight men.  Circulation. 1990;  81 1293-1304
  • 43 Williams P T, Krauss R M, Wood P D, Lindgren F T, Giotas C, Vranizan K M. Lipoprotein subfractions of runners and sedentary men.  Metabolism. 1986;  35 45-52
  • 44 Williams P T, Stefanick M L, Vranizan K M, Wood P D. The effects of weight loss by exercise or by dieting on plasma high-density lipoprotein (HDL) levels in men with low, intermediate, and normal-to-high HDL at baseline.  Metabolism. 1994;  43 917-924
  • 45 Wood P D, Stefanick M L, Williams P T, Haskell W L. The effects on plasma lipoprotein of a prudent weight-reducing diet, with or without exercise, in overweight men and women.  N Engl J Med. 1991;  325 461-466
  • 46 Yang C Y, Chen S H, Gianturco S H, Bradley W A, Sparrow J T, Tanimura M, Li W H, Sparrow D A, DeLoof H, Rosseneu M, Lee F S, Gu Z W, Gotto A M, Chan L. Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100.  Nature. 1986;  323 738-742
  • 47 Zambon A, Austin M A, Brown B G, Hokanson J E, Brunzell J D. Effect of hepatic lipase on LDL in normal men and those with coronary artery disease.  Arterioscler Thromb. 1993;  13 147-153

Dr. PD Martin Halle

Medizinische Universitätsklinik Abt. Prävention, Rehabilitation und Sportmedizin

Hugstetter Straße 55

D-79106 Freiburg

Germany

Phone: +49 (761) 270 7461

Fax: +49 (761) 270 7470

Email: mh@msm1.ukl.uni-freiburg.de

    >