Klin Monbl Augenheilkd 2015; 232(12): 1392-1396
DOI: 10.1055/s-0035-1546155
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Hornhautvernetzung beim Keratokonus: „Epi-off“ oder „Epi-on“?

Cross-Linking in Keratoconus: “Epi-off” or “Epi-on”?
F. Raiskup
1   Klinik für Augenheilkunde, Universitätsklinikum Carl Gustav Carus, Dresden
,
V. Veliká
2   Klinik für Augenheilkunde, Universitätsklinikum, Hradec Králové, Tschechische Republik
,
M. Veselá
2   Klinik für Augenheilkunde, Universitätsklinikum, Hradec Králové, Tschechische Republik
,
E. Spörl
1   Klinik für Augenheilkunde, Universitätsklinikum Carl Gustav Carus, Dresden
› Author Affiliations
Further Information

Publication History

eingereicht 06 April 2015

akzeptiert 19 May 2015

Publication Date:
17 December 2015 (online)

Zusammenfassung

Eine Hornhautquervernetzung kann die Progression des Keratokonus stoppen, doch welche ist die beste Behandlungsmethode? Es gibt verschiedene Korrektur- und Behandlungsmöglichkeiten beim Keratokonus, doch nur die Hornhautquervernetzung (CXL) scheint die Progression der Krankheit aufzuhalten. Um eine effektive Hornhautquervernetzung zu garantieren, wird bei der CXL-Behandlung das Hornhautepithel vor der Applikation von Riboflavin und der Bestrahlung mit ultraviolettem Licht entfernt – „Epi-off“-CXL. Einige Methoden der „Epi-on“-CXL (transepithelial) wurden vorgeschlagen, da eine Instandhaltung des Hornhautepithels weniger schmerzhaft sein sollte und dabei hilft, andere Nebenwirkungen im Zusammenhang mit CXL zu minimieren. Bisherige Befunde zeigen, dass die Epi-off-CXL die effektivste Methode zur Stabilisierung der Hornhaut und zur Verlangsamung der Keratokonusprogression ist – doch transepitheliale Methoden gewinnen an Boden.

Abstract

Corneal cross-linking can halt the progression of keratoconus, but what is the best approach for treatment? There are a number of treatment options for keratoconus, but only corneal cross-linking (CXL) appears to halt the progression of the disease. To guarantee effective cross-linking, CXL treatment involves removal of the corneal epithelium prior to riboflavin application and ultraviolet light illumination – “epi-off” CXL. Several methods of “epi-on” (transepithelial) CXL have been proposed, such as keeping the corneal epithelium intact which should be less painful and help avoid other CXL-associated adverse events. The evidence so far is that epi-off CXL remains the most effective method of strengthening the cornea and slowing keratoconus progression – but transepithelial methods are gaining ground.

 
  • Literatur

  • 1 Davis LJ, Schechtman KB, Wilson BS et al. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group. Longitudinal changes in visual acuity in keratoconus. Invest Ophthalmol Vis Sci 2006; 47: 489-500
  • 2 Barr JT, Wilson BS, Gordon MO et al. CLEK Study Group. Estimation of the incidence and factors predictive of corneal scarring in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. Cornea 2006; 25: 16-25
  • 3 Rebenitsch RL, Kymes SM, Walline JJ et al. The lifetime economic burden of keratoconus: a decision analysis using a markov model. Am J Ophthalmol 2011; 151: 768-773
  • 4 Caporossi A, Mazzotta C, Baiocchi S et al. Riboflavin-UVA-induced corneal collagen cross-linking in pediatric patients. Cornea 2012; 31: 227-231
  • 5 Raiskup F, Theuring A, Pillunat L et al. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg 2015; 41: 41-46
  • 6 Wittig-Silva C, Chan E, Islam FM et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology 2014; 121: 812-821
  • 7 OʼBrart DP, Chan E, Samaras K et al. A randomized, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br J Ophthalmol 2011; 95: 1519-1524
  • 8 Greenstein SA, Fry KL, Hersh PS. In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial. Cornea 2012; 31: 21-25
  • 9 Craig JA, Mahon J, Yellowlees A et al. Epithelium-off photochemical corneal collagen cross-linkage using riboflavin and ultraviolet a for keratoconus and keratectasia: a systematic review and meta-analysis. Ocul Surf 2014; 12: 202-214
  • 10 Sykakis E, Karim R, Evans JR et al. Corneal collagen cross-linking for treating keratoconus (Review). The Cochrane Collaboration® (24.03.2015).. Im Internet: http://www.thecochranelibrary.com Stand: 14.05.2015
  • 11 Koppen C, Wouters K, Mathysen D et al. Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg 2012; 38: 1000-1005
  • 12 Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg 2009; 35: 540-546
  • 13 Scarcelli G, Kling S, Quijano E et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci 2013; 54: 1418-1425
  • 14 Caporossi A, Mazzotta C, Paradiso AL et al. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg 2013; 39: 1157-1163
  • 15 Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg 2010; 26: 942-948
  • 16 Wollensak G, Hammer CM, Spörl E et al. Biomechanical efficacy of collagen crosslinking in porcine cornea using a femtosecond laser pocket. Cornea 2014; 33: 300-305
  • 17 Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg 2009; 25: 1034-1037
  • 18 Arboleda A, Kowalczuk L, Savoldelli M et al. Evaluating in vivo delivery of riboflavin with coulomb-controlled iontophoresis for corneal collagen cross-linking: a pilot study. Invest Ophthalmol Vis Sci 2014; 55: 2731-2738
  • 19 Cassagne M, Laurent C, Rodrigues M et al. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci 2014; [Epub ahead of print]
  • 20 Mastropasqua L, Nubile M, Calienno R et al. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol 2014; 157: 623-630
  • 21 Vinciguerra P, Randleman JB, Romano V et al. Transepithelial iontophoresis corneal collagen cross-linking for progressive keratoconus: initial clinical outcomes. J Refract Surg 2014; 30: 746-753
  • 22 Filippello M, Stagni E, OʼBrart D. Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg 2012; 38: 283-291
  • 23 Kocak I, Aydin A, Kaya F et al. Comparison of transepithelial corneal collagen crosslinking with epithelium-off crosslinking in progressive keratoconus. J Fr Ophthalmol 2014; 37: 371-376
  • 24 Touboul D, Efron N, Smadja D et al. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J Refract Surg 2012; 28: 769-776
  • 25 Caporossi A, Mazzotta C, Baiocchi S et al. Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol 2012; 22 (Suppl. 07) S81-S88
  • 26 Bouheraoua N, Jouve L, El Sanharawi M et al. Optical coherence tomography and confocal microscopy following three different protocols of corneal collagen-crosslinking in keratoconus. Invest Ophthalmol Vis Sci 2014; 55: 7601-7609
  • 27 Bonnel S, Berguiga M, De Rivoyre B et al. Demarcation line evaluation of iontophoresis-assisted transepithelial corneal collagen cross-linking for keratoconus. J Refract Surg 2015; 31: 36-40