Semin Thromb Hemost 2010; 36(8): 857-864
DOI: 10.1055/s-0030-1267039
© Thieme Medical Publishers

Tissue Factor, Lipid Rafts, and Microparticles

Pavel Davizon1 , Adam D. Munday1 , José A. López1 , 2
  • 1Research Division, Puget Sound Blood Center, Seattle, Washington
  • 2Departments of Medicine and Biochemistry, University of Washington, Seattle, Washington
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

Evidence is emerging that tissue-factor–bearing microparticles and other microparticles arise from regions of the parent cell's plasma membrane that are rich in lipid rafts. In this brief review, we summarize the evidence for the raft origins of microparticles and the implications of these origins for the biological and medical consequences of microparticle production and for therapeutic strategies to diminish their production and potential to do harm.

REFERENCES

  • 1 Ruf W, Furlan-Freguia C, Niessen F. Vascular and dendritic cell coagulation signaling in sepsis progression.  J Thromb Haemost. 2009;  7(Suppl 1) 118-121
  • 2 Morris D R, Ding Y, Ricks T K, Gullapalli A, Wolfe B L, Trejo J. Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells.  Cancer Res. 2006;  66(1) 307-314
  • 3 Riewald M, Ruf W. Orchestration of coagulation protease signaling by tissue factor.  Trends Cardiovasc Med. 2002;  12(4) 149-154
  • 4 Hembrough T A, Swartz G M, Papathanassiu A et al. Tissue factor/factor VIIa inhibitors block angiogenesis and tumor growth through a nonhemostatic mechanism.  Cancer Res. 2003;  63(11) 2997-3000
  • 5 Khorana A A, Ahrendt S A, Ryan C K et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer.  Clin Cancer Res. 2007;  13(10) 2870-2875
  • 6 De Blaineville H MD. Injection de matière cérébrale dans des veines.  Gazette Medical Paris. 1834;  2 524
  • 7 Morawitz P. Die Chemie der Blutgerinnung.  Ergeb Physiol. 1905;  4 307-422
  • 8 Howell W H. Theories of blood coagulation.  Physiol Rev. 1935;  15 435-470
  • 9 Bächli E. History of tissue factor.  Br J Haematol. 2000;  110(2) 248-255
  • 10 Broze Jr G J, Leykam J E, Schwartz B D, Miletich J P. Purification of human brain tissue factor.  J Biol Chem. 1985;  260(20) 10917-10920
  • 11 Fisher K L, Gorman C M, Vehar G A, O'Brien D P, Lawn R M. Cloning and expression of human tissue factor cDNA.  Thromb Res. 1987;  48(1) 89-99
  • 12 Morrissey J H, Fakhrai H, Edgington T S. Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade.  Cell. 1987;  50(1) 129-135
  • 13 Scarpati E M, Wen D, Broze Jr G J et al. Human tissue factor: cDNA sequence and chromosome localization of the gene.  Biochemistry. 1987;  26(17) 5234-5238
  • 14 Spicer E K, Horton R, Bloem L et al. Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA.  Proc Natl Acad Sci U S A. 1987;  84(15) 5148-5152
  • 15 Mackman N, Morrissey J H, Fowler B, Edgington T S. Complete sequence of the human tissue factor gene, a highly regulated cellular receptor that initiates the coagulation protease cascade.  Biochemistry. 1989;  28(4) 1755-1762
  • 16 Edgington T S, Ruf W, Rehemtulla A, Mackman N. The molecular biology of initiation of coagulation by tissue factor.  Curr Stud Hematol Blood Transfus. 1991;  (58) 15-21
  • 17 Morrissey J H, Gregory S A, Mackman N, Edgington T S. Tissue factor regulation and gene organization.  Oxf Surv Eukaryot Genes. 1989;  6 67-84
  • 18 Chen V M, Ahamed J, Versteeg H H, Berndt M C, Ruf W, Hogg P J. Evidence for activation of tissue factor by an allosteric disulfide bond.  Biochemistry. 2006;  45(39) 12020-12028
  • 19 Dorfleutner A, Ruf W. Regulation of tissue factor cytoplasmic domain phosphorylation by palmitoylation.  Blood. 2003;  102(12) 3998-4005
  • 20 Bach R, Konigsberg W H, Nemerson Y. Human tissue factor contains thioester-linked palmitate and stearate on the cytoplasmic half-cystine.  Biochemistry. 1988;  27(12) 4227-4231
  • 21 Drake T A, Morrissey J H, Edgington T S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis.  Am J Pathol. 1989;  134(5) 1087-1097
  • 22 Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development.  Arterioscler Thromb Vasc Biol. 2004;  24(6) 1015-1022
  • 23 Furie B, Furie B C. Mechanisms of thrombus formation.  N Engl J Med. 2008;  359(9) 938-949
  • 24 Giesen P L, Rauch U, Bohrmann B et al. Blood-borne tissue factor: another view of thrombosis.  Proc Natl Acad Sci U S A. 1999;  96(5) 2311-2315
  • 25 Del Conde I, Bharwani L D, Dietzen D J, Pendurthi U, Thiagarajan P, López J A. Microvesicle-associated tissue factor and Trousseau's syndrome.  J Thromb Haemost. 2007;  5(1) 70-74
  • 26 Bogdanov V Y, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein.  Nat Med. 2003;  9(4) 458-462
  • 27 Nawroth P P, Stern D M. Modulation of endothelial cell hemostatic properties by tumor necrosis factor.  J Exp Med. 1986;  163(3) 740-745
  • 28 Norris L A, Weldon S, Nugent A, Roche H M. LPS induced tissue factor expression in the THP-1 monocyte cell line is attenuated by conjugated linoleic acid.  Thromb Res. 2006;  117(4) 475-480
  • 29 Bevilacqua M P, Pober J S, Majeau G R, Fiers W, Cotran R S, Gimbrone Jr M A. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1.  Proc Natl Acad Sci U S A. 1986;  83(12) 4533-4537
  • 30 Gerrits A J, Koekman C A, van Haeften T W, Akkerman J W. Platelet tissue factor synthesis in type 2 diabetic patients is resistant to inhibition by insulin.  Diabetes. 2010;  59(6) 1487-1495
  • 31 Egorina E M, Sovershaev M A, Olsen J O, Østerud B. Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: evidence for a direct transfer.  Blood. 2008;  111(3) 1208-1216
  • 32 Bach R R. Tissue factor encryption.  Arterioscler Thromb Vasc Biol. 2006;  26(3) 456-461
  • 33 Ahamed J, Versteeg H H, Kerver M et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling.  Proc Natl Acad Sci U S A. 2006;  103(38) 13932-13937
  • 34 Toomey J R, Kratzer K E, Lasky N M, Stanton J J, Broze Jr G J. Targeted disruption of the murine tissue factor gene results in embryonic lethality.  Blood. 1996;  88(5) 1583-1587
  • 35 Parry G C, Erlich J H, Carmeliet P, Luther T, Mackman N. Low levels of tissue factor are compatible with development and hemostasis in mice.  J Clin Invest. 1998;  101(3) 560-569
  • 36 Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H. Binding of factor VIIa to tissue factor on keratinocytes induces gene expression.  J Biol Chem. 2000;  275(9) 6580-6585
  • 37 Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle.  Science. 2010;  327(5961) 46-50
  • 38 Goswami D, Gowrishankar K, Bilgrami S et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity.  Cell. 2008;  135(6) 1085-1097
  • 39 Davizon P, López J A. Microparticles and thrombotic disease.  Curr Opin Hematol. 2009;  16(5) 334-341
  • 40 Ueba T, Nomura S, Inami N et al. Plasma level of platelet-derived microparticles is associated with coronary heart disease risk score in healthy men.  J Atheroscler Thromb. 2010;  17(4) 342-349
  • 41 Flaumenhaft R, Dilks J R, Richardson J et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles.  Blood. 2009;  113(5) 1112-1121
  • 42 Berckmans R J, Neiuwland R, Böing A N, Romijn F P, Hack C E, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation.  Thromb Haemost. 2001;  85(4) 639-646
  • 43 Habib A, Kunzelmann C, Shamseddeen W, Zobairi F, Freyssinet J M, Taher A. Elevated levels of circulating procoagulant microparticles in patients with beta-thalassemia intermedia.  Haematologica. 2008;  93(6) 941-942
  • 44 Fontana V, Jy W, Ahn E R et al. Increased procoagulant cell-derived microparticles (C-MP) in splenectomized patients with ITP.  Thromb Res. 2008;  122(5) 599-603
  • 45 Chironi G N, Simon A, Boulanger C M et al. Circulating microparticles may influence early carotid artery remodeling.  J Hypertens. 2010;  28(4) 789-796
  • 46 Nomura S, Shouzu A, Omoto S et al. Effects of eicosapentaenoic acid on endothelial cell-derived microparticles, angiopoietins and adiponectin in patients with type 2 diabetes.  J Atheroscler Thromb. 2009;  16(2) 83-90
  • 47 Ueba T, Haze T, Sugiyama M et al. Level, distribution and correlates of platelet-derived microparticles in healthy individuals with special reference to the metabolic syndrome.  Thromb Haemost. 2008;  100(2) 280-285
  • 48 Boilard E, Nigrovic P A, Larabee K et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production.  Science. 2010;  327(5965) 580-583
  • 49 Del Conde I, Shrimpton C N, Thiagarajan P, López J A. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation.  Blood. 2005;  106(5) 1604-1611
  • 50 Dietzen D J, Page K L, Tetzloff T A. Lipid rafts are necessary for tonic inhibition of cellular tissue factor procoagulant activity.  Blood. 2004;  103(8) 3038-3044
  • 51 Pendurthi U R, Ghosh S, Mandal S K, Rao L V. Tissue factor activation: is disulfide bond switching a regulatory mechanism?.  Blood. 2007;  110(12) 3900-3908
  • 52 Biró E, Akkerman J W, Hoek F J et al. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions.  J Thromb Haemost. 2005;  3(12) 2754-2763
  • 53 Wong S W, Kwon M J, Choi A M, Kim H P, Nakahira K, Hwang D H. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner.  J Biol Chem. 2009;  284(40) 27384-27392
  • 54 Carter G C, Bernstone L, Sangani D, Bee J W, Harder T, James W. HIV entry in macrophages is dependent on intact lipid rafts.  Virology. 2009;  386(1) 192-202
  • 55 Chen Y, Ott C J, Townsend K, Subbaiah P, Aiyar A, Miller W M. Cholesterol supplementation during production increases the infectivity of retroviral and lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G).  Biochem Eng J. 2009;  44(2-3) 199-207
  • 56 Nguyen D H, Hildreth J E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts.  J Virol. 2000;  74(7) 3264-3272
  • 57 Scheiffele P, Rietveld A, Wilk T, Simons K. Influenza viruses select ordered lipid domains during budding from the plasma membrane.  J Biol Chem. 1999;  274(4) 2038-2044
  • 58 Takeda M, Leser G P, Russell C J, Lamb R A. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion.  Proc Natl Acad Sci U S A. 2003;  100(25) 14610-14617
  • 59 Scolari S, Engel S, Krebs N et al. Lateral distribution of the transmembrane domain of influenza virus hemagglutinin revealed by time-resolved fluorescence imaging.  J Biol Chem. 2009;  284(23) 15708-15716
  • 60 Isa P, Realpe M, Romero P, López S, Arias C F. Rotavirus RRV associates with lipid membrane microdomains during cell entry.  Virology. 2004;  322(2) 370-381
  • 61 Bitler A, Lev N, Fridmann-Sirkis Y, Blank L, Cohen S R, Shai Y. Kinetics of interaction of HIV fusion protein (gp41) with lipid membranes studied by real-time AFM imaging.  Ultramicroscopy. 2010;  110(6) 694-700
  • 62 Coil D A, Miller A D. Enhancement of enveloped virus entry by phosphatidylserine.  J Virol. 2005;  79(17) 11496-11500
  • 63 Patil A, Gautam A, Bhattacharya J. Evidence that Gag facilitates HIV-1 envelope association both in GPI-enriched plasma membrane and detergent resistant membranes and facilitates envelope incorporation onto virions in primary CD4 + T cells.  Virol J. 2010;  7 3
  • 64 Li H, Dou J, Ding L, Spearman P. Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells.  J Virol. 2007;  81(23) 12899-12910
  • 65 Adamson C S, Freed E O. Human immunodeficiency virus type 1 assembly, release, and maturation.  Adv Pharmacol. 2007;  55 347-387
  • 66 Christersson C, Johnell M, Siegbahn A. Tissue factor and IL8 production by P-selectin-dependent platelet-monocyte aggregates in whole blood involves phosphorylation of Lyn and is inhibited by IL10.  J Thromb Haemost. 2008;  6(6) 986-994
  • 67 Liu M L, Reilly M P, Casasanto P, McKenzie S E, Williams K J. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles.  Arterioscler Thromb Vasc Biol. 2007;  27(2) 430-435
  • 68 Becker L, Gharib S A, Irwin A D et al. A macrophage sterol-responsive network linked to atherogenesis.  Cell Metab. 2010;  11(2) 125-135
  • 69 Nomura S, Inami N, Shouzu A et al. The effects of pitavastatin, eicosapentaenoic acid and combined therapy on platelet-derived microparticles and adiponectin in hyperlipidemic, diabetic patients.  Platelets. 2009;  20(1) 16-22
  • 70 Dietzen D J, Page K L, Tetzloff T A, Bohrer A, Turk J. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase blunts factor VIIa/tissue factor and prothrombinase activities via effects on membrane phosphatidylserine.  Arterioscler Thromb Vasc Biol. 2007;  27(3) 690-696
  • 71 Jeon J Y, Hwang S Y, Cho S H, Choo J, Lee E K. Effect of cholesterol content on affinity and stability of factor VIII and annexin V binding to a liposomal bilayer membrane.  Chem Phys Lipids. 2010;  163(4–5) 335-340
  • 72 Jump D B. The biochemistry of n-3 polyunsaturated fatty acids.  J Biol Chem. 2002;  277(11) 8755-8758
  • 73 Shaikh S R, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation.  Am J Clin Nutr. 2006;  84(6) 1277-1289
  • 74 Pruemer J. Prevalence, causes, and impact of cancer-associated thrombosis.  Am J Health Syst Pharm. 2005;  62(22, Suppl 5) S4-S6
  • 75 López J A, Chen J. Pathophysiology of venous thrombosis.  Thromb Res. 2009;  123(Suppl 4) S30-S34
  • 76 Yu J L, Rak J W. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells.  J Thromb Haemost. 2004;  2(11) 2065-2067
  • 77 Tateo S, Mereu L, Salamano S et al. Ovarian cancer and venous thromboembolic risk.  Gynecol Oncol. 2005;  99(1) 119-125
  • 78 Iodice S, Gandini S, Löhr M, Lowenfels A B, Maisonneuve P. Venous thromboembolic events and organ-specific occult cancers: a review and meta-analysis.  J Thromb Haemost. 2008;  6(5) 781-788
  • 79 Sato T, Tsujino I, Ikeda D, Ieko M, Nishimura M. Trousseau's syndrome associated with tissue factor produced by pulmonary adenocarcinoma.  Thorax. 2006;  61(11) 1009-1010
  • 80 Davila M, Amirkhosravi A, Coll E et al. Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation.  J Thromb Haemost. 2008;  6(9) 1517-1524
  • 81 Regina S, Valentin J B, Lachot S, Lemarié E, Rollin J, Gruel Y. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN.  Clin Chem. 2009;  55(10) 1834-1842
  • 82 Yokota N, Koizume S, Miyagi E et al. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells.  Br J Cancer. 2009;  101(12) 2023-2029
  • 83 Versteeg H H, Schaffner F, Kerver M et al. Protease-activated receptor (PAR) 2, but not PAR1, signaling promotes the development of mammary adenocarcinoma in polyoma middle T mice.  Cancer Res. 2008;  68(17) 7219-7227
  • 84 Schaffner F, Ruf W. Tissue factor and PAR2 signaling in the tumor microenvironment.  Arterioscler Thromb Vasc Biol. 2009;  29(12) 1999-2004

José A LópezM.D. 

Research Division, Puget Sound Blood Center

921 Terry Avenue, Seattle, WA 98104

Email: josel@psbcresearch.org

    >