Regular Article
Inhibitory effects of 22-oxa-calcitriol and all- trans retinoic acid on the growth of a canine osteosarcoma derived cell-line in vivo and its pulmonary metastasis in vivo

https://doi.org/10.1053/rvsc.1999.0360Get rights and content

Abstract

Pulmonary metastasis is a major cause of death and a major obstacle to the successful treatment of canine osteosarcoma. However, the residual capacity of the neoplasia for differentiation and its susceptibility to undergo apoptosis may be used to suppress its growth and metastatic properties. The highly metastasizing POS (HMPOS) canine osteosarcoma cell line which preferentially metastasize to the lungs was used to test the possible efficacy of 22-oxa-calcitriol (OCT) and all- trans retinoic acid (ATRA) to inhibit growth and pulmonary metastasis of the subcutaneously grown osteosarcoma in nude mice. Treatments in vitro, morphologically elongated and increased alkaline phosphatase activity and staining of cells. Tumour growth in vivo was inhibited significantly and the combination treatment of OCT andATRA (OCT + ATRA) exerted a synergistic and stronger suppression at concentration of 1.0 μg kg–1body weight when given subcutaneously three times a week for 5 weeks. The subcutaneous tumours of the control mice consisted of osteoblast-like cells and isolated chondroblast-like cells, but formed several areas of osteoid and increased amount of collagen tissue in all treated mice. Pinpoint macrometastatic nodules developed only in all control mice. Micrometastatic nodule developed only in two of six mice treated with ATRA. However, nodule size and number, and lung wet weight were all reduced significantly. Metastasis were not seen in the mice treated with OCT or OCT + ATRA. This study demonstrated that inhibition of growth and pulmonary metastasis was induced by subcutaneous treatment with these drugs and suggest that both its differentiating and apoptotic inducing activities may be responsible for the antitumour effects. These drugs may be useful in the clinic as an adjunct for the treatment of canine osteosarcoma.

References (24)

  • A. MAHONEN et al.

    Type I procollagen synthesis is regulated by steroids and related hormones in human osteosarcoma cells

    Journal of Cell Biochemistry

    (1998)
  • Cited by (0)

    View full text