Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Use of log polar space for foveation and feature recognition

Use of log polar space for foveation and feature recognition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Vision, Image and Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The finding and maintaining of high accuracy foveation points for several types of recognised feature in log polar space such as a line, circular or elliptical arc is considered. Log polar space is preferred over cartesian space as it provides a high resolution and a wide viewing angle; feature invariance in the fovea simplifies foveation; it allows multi-resolution analysis; and rotation and scale are linear translations in log polar space.

References

    1. 1)
      • S.L. Bartlett , R. Jain . Motion stereo and ego-motion complex logarithmic mapping. Proc. SPIE-Int. Soc. Opt. Eng. , 138 - 145
    2. 2)
      • Aloimonous, J.Y.: `Purposive and qualitative active vision', Proceedings of DARPA Image understandingworkshop, 1990, p. 816–828.
    3. 3)
      • C.F.R. Weiman , G. Chaikin . Logarithmic spiral grid for image processing and display. Comput. Graph. Image Process. , 197 - 226
    4. 4)
      • H. Wechsler , G.L. Zimmerman . 2D invariant object recognition using distributed associativememory. Pattern Anal. Mach. Intell. , 6 , 811 - 821
    5. 5)
      • Bederson, B.B.: `A miniature space variant active vision system', 1992, PhD, New York University.
    6. 6)
      • M. Tistarelli , G. Sandini . On the advantages of polar and log polar mapping for directestimation of time-to-impact from optical flow. IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 401 - 410
    7. 7)
      • E. Kowler , R.M. Steinman . Small saccades serve no useful purpose: Reply to a letter byR.W. Ditchburn. Vis. Res. , 273 - 276
    8. 8)
      • P. Cavanagh . Size invariances: Reply to Schwartz. Perception , 469 - 474
    9. 9)
      • M.A. Abbott , R.A. Messner . Use of coordinate mapping as a method for image data reduction. Proc. SPIE - Int. Soc. Opt. Eng. , 272 - 282
    10. 10)
      • D.H. Ballard . Animate vision. Artif. Intell. , 57 - 86
    11. 11)
      • G. Sandini , V. Tagliasco . An anthropomorphic retina-like structure for scene analysis. Comput. Graph. Image Process. , 365 - 372
    12. 12)
      • R.W. Ditchburn . The function of small saccades. Vis. Res. , 271 - 272
    13. 13)
      • R.M. Bolle , A. Califano , R. Kjeldsen , R. Mohan . A complete and scalable architecture for 3Dmodel based vision. Proc. IEEE , 212 - 219
    14. 14)
      • V.D. Spiegel , G. Kreider , C. Claeys , I. Debusschere , G. Sandini , P. Dario , F. Fantini , P. Bellutti , S. Soncini , C. Mead , M. Ismail . (1989) A foveatted retina-like sensor using CCD technology, Analog VLSI implementation of neural systems.
    15. 15)
      • P. Cavanagh . Size and position invariances in the visual system. Perception , 167 - 177
    16. 16)
      • R.S. Wallace , P.W. Ong , B.B. Bederson , E.L. Schwartz . Space variant image processing. Int. J. Comput. Vis.
    17. 17)
      • J.C. Wilson , R.M. Hodgson . Log polar mapping applied to pattern representation andrecognition. Comput. Graph. Image Process. , 245 - 277
    18. 18)
      • G. Borgefors . Distance transforms in digital images. Comput. Vis. Graph. Image Process. , 344 - 371
    19. 19)
      • Swain, M.J., Stricker, M.: `Promising direction in active vision', CS 9–27, Technical report, 1991.
    20. 20)
      • R.A. Messner , H.H. Szu . An image processing architecture for real time generation of scaleand rotation invariant patterns. Comput. Vis. Graph. Image Process. , 50 - 66
    21. 21)
      • E.L. Schwartz . Cortical anatomy, size invariance, and spatial frequency analysis. Biol. Cybern. , 455 - 468
    22. 22)
      • L. Massone , G. Sandini , V. Tagliasco . ‘Form-invariant’ topological mapping strategy for 2Dshape recognition. Comput. Vis. Graph. Image Process. , 169 - 188
    23. 23)
      • Burt, P.J.: `Attention mechanism for vision in a dynamic world', Proceedings of IEEE international conferenceon Pattern recognition, 1988, 2, p. 977–987.
    24. 24)
      • C.F.R. Weiman , R.D. Juday . Tracking algorithms using log polar mapped image coordinate. Proc. SPIE - Int. Soc. Opt. Eng. , 843 - 852
    25. 25)
      • R. Bajcsy . Active perception. Proc. IEEE , 8 , 996 - 1005
    26. 26)
      • G. Sandini , P. Dario . (1989) Active vision based on space variant sensing.
    27. 27)
      • W.H. Press , S.A. Teukolsky , W.T. Vetterling , B.P. Flannery . (1996) Numerical recipes in C.
    28. 28)
      • J. Laycock . (1978) The movement and analysis of eye movements.
    29. 29)
      • Lim, F.L., West, G.A.W., Venkatesh, S.: `An investigation into the use of log polar space forfoveation, feature recognition and tracking', 4, Technical report, July 1995.
    30. 30)
      • E.L. Schwartz . Spatial mapping in the primate sensory projection: Analytic structureand relevanceto perception. Biol. Cybern. , 181 - 194
    31. 31)
      • L. Kitchen , A. Rosenfeld . Grey level corner detection. Pattern Recognit. Lett. , 95 - 107
    32. 32)
      • G. Borgefors . Distance transforms in arbitrary dimensions. Comput. Vis. Graph. Image Process. , 321 - 345
    33. 33)
      • Rojer, A.S., Schwartz, E.L.: `Design considerations for a space variant visual sensor with complexlogarithmic geometry', Proceedings of 10th international conference on Patternrecognition, 1990, 2, p. 278–285.
    34. 34)
      • G. Sandini , M. Tistarelli . (1992) Vision and space variant sensing.
    35. 35)
      • P. Cavanagh . Functional size invariances is not provided by the cortical magnificationfactor. Vis. Res. , 1409 - 1412
    36. 36)
      • Hilsenrath, O.A., Zeevi, Y.Y.: `3D cuboid scene understanding by a mixed cognitive graph andlog-complex mapping paradigm', Proceedings of international conference on Computer vision, 1988, p. 696–699.
    37. 37)
      • W. Polzleitner , H. Wechsler . Selective and focused invariant recognition using distributedassociative memories (DAM). IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 809 - 814
    38. 38)
      • Califano, A.R., Kjelsen, R., Bolle, R.M.: `Data and model driven foveation', Proceedings of internationalconference on Computer vision, 1990, p. 1–7.
    39. 39)
      • H.P. Moravec . (1981) Robot rover visual navigation.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-vis_19971457
Loading

Related content

content/journals/10.1049/ip-vis_19971457
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address