Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Robot angular link velocity estimation in the presence of high-level mixed uncertainties

Robot angular link velocity estimation in the presence of high-level mixed uncertainties

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The estimation problem of the angular link velocity via a nonlinear high-gain observer is considered. It is solved in the presence of essential parametric uncertainty and external noise perturbations based only on current position measurements. The obtained state space estimation error turns out to be robust with respect to given uncertainties, and its bound can be expressed by a linear combination of the internal (parametric) and external (noise type) uncertainty levels. The simulation results, concerning a robot manipulator with two degrees of mobility and with unknown friction parameter subjected to variations within a given interval, illustrate the effectiveness of the suggested technique.

References

    1. 1)
      • R. MARTINEZ-GUERRA , J. DE LEON-MORALES . Observers for a multi-input multi-output bilinear systems class: a differential algebraic approach. J. Math. Comp. Model. , 125 - 132
    2. 2)
      • F.L. LEWIS , S. JAGANNATHAN , A. YESILDIREK . (1999) , Neural network control of robot manipulators and nonlinear systems.
    3. 3)
      • C.Y. SU , Y. STEPANENKO . Adaptive sliding mode coordinated control of multiple robot arms attached to a constrained object. IEEE Trans. Syst. Man. Cybern. , 5 , 871 - 878
    4. 4)
      • BERGHUIS, H., NIJMEIJER, H.: `Observer design in the tracking control problem for robots', Proceedings of IFAC symposium NOLCOS 92, 1992, Bordeaux, France, p. 588–593.
    5. 5)
      • Y.H. KIM , F.L. LEWIS . Nonlinear observer design using dynamic recurrent neural networks. Automatica , 8 , 1539 - 1543
    6. 6)
      • POZNYAK, A.S., OSORIO-CORDERO, A.: `Suboptimal robust filtering of states of finite dimensional linear systems with time-varying parameters under nonrandom disturbances', Proceedings of IEEE conference on Decision and Control, 1994, Lake Buena Vista, FL, p. 3931–3936.
    7. 7)
      • ORTEGA, R., SPONG, M.: `Adaptive motion control of rigid robots: a tutorial', Proceedings of IEEE conference on Decision and control, 1988, p. 1575–1584.
    8. 8)
      • R. MARTINEZ-GUERRA , J. DE LEON-MORALES . Nonlinear estimators: a differential algebraic approach. Appl. Math. Lett. , 21 - 25
    9. 9)
      • J.C. WILLEMS . Least squares optimal control and algebraic riccati equations. IEEE Trans. Autom. Control , 621 - 634
    10. 10)
      • BERGHUIS, H., NIJMEIJER, H.: `Robust control of robots using only position measurements', Proceedings of IFAC world congress, 1993, Sydney, Australia, p. 501–506.
    11. 11)
      • GORTCHEVA, E., POZNYAK, A., DIAZ DE LEON, V.: `HJ-robust control for robot manipulator with unknown friction', Proceedings of IEEE conference on Decision and control (CDC98), 1998, Tampa, FL, p. 2019–2020.
    12. 12)
      • W. CANUDAS DE , J.J.E. SLOTINE . Sliding observers for robot manipulators. Automatica , 5 , 859 - 864
    13. 13)
      • J.P. GAUTHIER , H. HAMMOURI , S. OTHMAN . A simple observer for non-linear systems, application to bioreactors. IEEE Trans. Autom. Control , 875 - 880
    14. 14)
      • F.R. GANTMACHER . (1970) , Lectures in analytical mechanics.
    15. 15)
      • H. BERGHUIS , H. NIJMEIJER . A passivity approach to controller–observer design for robots. IEEE Trans. Robot. Autom. , 740 - 754
    16. 16)
      • A. Isidori . (1989) , Nonlinear control systems.
    17. 17)
      • W. CANUDAS DE , N. FIXOT , K.J. ASTROM . Trajectory tracking in robot manipulators via nonlinear estimated state feedback. IEEE Trans. Autom. Control , 1 , 138 - 144
    18. 18)
      • Y.H. KIM , F.L. LEWIS . (1998) , High-level feedback control with neural networks.
    19. 19)
      • S. NICOSIA , P. TOMEI . Robot control by using only joint position measurements. IEEE Trans. Autom. Control , 9 , 1058 - 1061
    20. 20)
      • C.G. BARIL , P.O. GUTMAN . Performance enhancing adaptive friction compensation for uncertain systems. IEEE Trans. Control. Syst. Technol. , 5 , 466 - 479
    21. 21)
      • W. CANUDAS DE , N. FIXOT . Robot control via robust estimated state feedback. IEEE Trans. Autom. Control. , 12 , 1497 - 1501
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20000651
Loading

Related content

content/journals/10.1049/ip-cta_20000651
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address