Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Dual basis systolic multipliers for GF(2m)

Dual basis systolic multipliers for GF(2m)

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Computers and Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Two systolic multipliers for GF(2m) are presented, one bit-serial and one bit-parallel. Both multipliers are hardware efficient and support pipelining. Both architectures are highly regular, require only local communication lines and have longest delay paths independent of m. Consequently these multipliers can be clocked at high speeds and are suitable for VLSI implementation. The design of both these multipliers is also independent of the defining irreducible polynomial for the field.

References

    1. 1)
      • S.T.J. Fenn , M. Benaissa , D. Taylor . Division in GF (2m). Electron. Lett. , 2259 - 2261
    2. 2)
      • Mastrovito, E.D.: `VLSI architectures for computations in Galois fields', 1991, PhD, Linkoping University, Sweden.
    3. 3)
      • R.L. Rivest , A. Shamir , L. Adleman . A method for obtaining digital signatures and public key cryptosystems. Commun. ACM , 2 , 120 - 126
    4. 4)
      • C.S. Yeh , S. Reed , T.K. Truong . Systolic multipliers for finite fields GF(2m). IEEE Trans. Comput. , 4 , 357 - 360
    5. 5)
      • H.T. Kung . Why systolic architectures?. IEEE Comput. Mag. , 1 , 37 - 45
    6. 6)
      • M. Morii , M. Kasahara , D.L. Whiting . Efficient bit-serial multiplicationand the discrete-time Wiener–Hopf equation over finite fields. IEEE Trans. Inf. Theory , 6 , 1177 - 1183
    7. 7)
      • I.S. Hsu , T.K. Truong , L.J. Deutsch , I.S. Reed . A comparison of VLSIarchitectures of finite field multipliers using dual, normal or standard bases. IEEE Trans. Comput. , 6 , 735 - 737
    8. 8)
      • S.T.J. Fenn , M. Benaissa , D. Taylor . GF(2m) multiplication and division over the dual basis. IEEE Trans. Comput. , 3 , 319 - 327
    9. 9)
      • Fenn, S.T.J., Taylor, D., Benaissa, M.: `A dual basis systolic divider for', Proceedings of ISCAS'94, 1994, London, p. 4.307–4.310.
    10. 10)
      • C.-L. Wang , J.-L. Lin . Systolic array implementation of multiplier for finite fieldsGF (2m). IEEE Trans. , 7 , 796 - 800
    11. 11)
      • F.J. MacWilliams , N.J.A. Sloane . (1977) The theory of error-correcting codes.
    12. 12)
      • Fenn, S.T.J., Benaissa, M., Taylor, D.: `Bit-serial dual basis systolic multipliersfor ', Proceedings of ISCAS'95, 1995, Seattle, p. 3.2000–3.2003.
    13. 13)
      • E.R. Berlekamp . Bit-serial Reed–Solomon encoders. IEEE Trans. Inf. Theory , 6 , 869 - 874
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cdt_19970660
Loading

Related content

content/journals/10.1049/ip-cdt_19970660
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address