Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Phase tracking and restoration of circadian rhythms by model-based optimal control

Phase tracking and restoration of circadian rhythms by model-based optimal control

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Periodic cellular processes and especially circadian rhythms governed by the oscillating expression of a set of genes based on feedback regulation by their products have become an important issue in biology and medicine. The central circadian clock is an autonomous biochemical oscillator with a period close to 24 h. Research in chronobiology demonstrated that light stimuli can be used to delay or advance the phase of the oscillator, allowing it to influence the underlying physiological processes. Phase shifting and restoration of altered rhythms can generally be viewed as open-loop control problems that may be used for therapeutic purposes in diseases. A circadian oscillator model of the central clock mechanism is studied for the fruit fly Drosophila and show how model-based mixed-integer optimal control allows for the design of chronomodulated pulse-stimuli schemes achieving circadian rhythm restoration in mutants and optimal phase synchronisation between the clock and its environment.

References

    1. 1)
    2. 2)
    3. 3)
      • H. Alper , C. Fischer , E. Nevoigt , G. Stephanopoulos . Tuning genetic control through promoter engineering. Proc. Natl Acad. Sci. USA , 12678 - 12683
    4. 4)
      • J.-C. Leloup , A. Goldbeter . A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms , 70 - 87
    5. 5)
    6. 6)
    7. 7)
      • S. Sager . (2005) Numerical methods for mixed-integer optimal control problems.
    8. 8)
      • Z. Boulos , M.M. Macchi , M.P. Stürchler , K.T. Stewart , G.C. Brainard , A. Suhner , G. Wallace , R. Steffen . Light visor treatment for jet lag after westward travel across six time zones. Aviat. Space. Environ. Med. , 953 - 963
    9. 9)
      • J.K. Ronald , B. Seymonr . Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA , 2112 - 2116
    10. 10)
      • S. Reppert , D. Weaver . Coordination of circadian timing in mammals. Nature , 935 - 941
    11. 11)
      • D. Lebiedz , S. Sager , H.G. Bock , P. Lebiedz . Annihilation of limit cycle oscillations by identification of critical perturbing stimuli via mixed-integer optimal control. Phys. Rev. Lett.
    12. 12)
      • N. Bagheri , J. Stelling , F.J. Doyle . Quantitative performance metrics for robustness in circadian rhythms. Bioinformatics , 358 - 364
    13. 13)
      • I. Iurisci , E. Filipski , J. Reinhardt , S. Bach , A. Gianella-Borradori , S. Iacobelli , L. Meijer , F. Levi . Improved tumor control through circadian clock induction by seliciclib, a cyclin-dependent kinase inhibitor. Cancer Res. , 10720 - 10728
    14. 14)
      • D. Lebiedz , U. Brandt-Pollmann . Manipulation of self-aggregation patterns and waves in a reaction–diffusion system by optimal boundary control strategies. Phys. Rev. Lett.
    15. 15)
      • C.D. Smolke , T.A. Carrier , J.D. Keasling . Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl. Environ. Microbiol. , 5399 - 5405
    16. 16)
    17. 17)
      • Albersmeier, J., Bock, H.G.: `Efficient derivative generation in an adaptive BDF method', Proc. HPSC, 2006, Springer Verlag.
    18. 18)
      • A. Goldbeter , D. Claude . Time-patterned drug administration:insights from a modeling approach. Chronobiol. Int. , 157 - 175
    19. 19)
      • M.C. Mormont , J. Waterhouse , P. Bleuzen , S. Giachetti , A. Jami , A. Bogdan , J. Lellouch , J.L. Misset , Y. Touitou , F. Levi . Marked 24 h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin. Cancer Res. , 3038 - 3045
    20. 20)
      • M.H. de Smit , J. van Duin . Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl Acad. Sci. USA , 7668 - 7672
    21. 21)
      • M.W. Young . The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu. Rev. Biochem. , 135 - 152
    22. 22)
      • M.P. Myers , K. Wager-Smith , A. Rothenfluh-Hilfiker , Y.M. Young . Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science , 1736 - 1740
    23. 23)
      • J.C. Leloup , A. Goldbeter . Toward a detailed computational model for the mammalian circadian clock. Proc. Natl Acad. Sci. USA , 7051 - 7056
    24. 24)
      • D.J. Dijk , S.W. Lockley . Integration of human sleep–wake regulation and circadian rhythmicity. J. Appl. Physiol. , 852 - 62
    25. 25)
      • F. Levi . Cancer chronotherapy. Lancet Oncol. , 307 - 315
    26. 26)
      • Bock, H.G., Plitt, K.J.: `A multiple shooting algorithm for direct solution of optimal control problems', Proc. 9th IFAC World Congress, Budapest, 1984, Pergamon, p. 243–247.
    27. 27)
      • P. Ruoff , M. Vinsjevik , C. Monnerjahn , L. Rensing . The Goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of neurospora crassa. J. Theor. Biol. , 29 - 42
    28. 28)
      • F. Levi , U. Schibler . Circadian rhythms: mechanisms and therapeutic implications. Annu. Rev. Pharmacol. , 593 - 628
    29. 29)
      • E.J. Doedel . A program for the automatic bifurcation analysis of autonomous systems. Congr. Num. , 265 - 284
    30. 30)
      • F. Levi . Chronotherapeutics: the relevance of timing in cancer therapy. Cancer Causes Control , 611 - 621
    31. 31)
      • J.C. Leloup , A. Goldbeter . Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila. BioEssays , 84 - 93
    32. 32)
      • L. Fu , C.C. Lee . The circadian clock: pacemaker and tumour suppressor. Nature , 350 - 361
    33. 33)
      • A.T. Winfree . (2001) The geometry of biological time.
    34. 34)
      • H. Zeng , Z. Qian , M.P. Myers , M. Rosbash . A lightentrainment mechanism for the Drosophila circadian clock. Nature , 129 - 135
    35. 35)
      • O. Slaby , S. Sager , O. Shaik , U. Kummer , D. Lebiedz . Optimal control of self-organized dynamics in cellular signal transduction. Math. Comput. Model. Dyn. syst. , 5 , 487 - 502
    36. 36)
      • J. Stelling , E.D. Gilles , F.J. Doyle . Robustness properties of circadian clock architectures. Proc. Natl Acad. Sci. USA , 13210 - 13215
    37. 37)
      • S.M. Rajaratnam , J. Arendt . Health in a 24-h society. Lancet , 999 - 1005
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb_20070016
Loading

Related content

content/journals/10.1049/iet-syb_20070016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address