Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Remarks on feedforward circuits, adaptation, and pulse memory

Remarks on feedforward circuits, adaptation, and pulse memory

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This note studies feedforward circuits as models for perfect adaptation to step signals in biological systems. A global convergence theorem is proved in a general framework, which includes examples from the literature as particular cases. A notable aspect of these circuits is that they do not adapt to pulse signals, because they display a memory phenomenon. Estimates are given of the magnitude of this effect.

References

    1. 1)
      • E. Voit , A.R. Neves , H. Santos . The intricate side of systems biology. Proc. Natl. Acad. Sci. USA. , 9452 - 9457
    2. 2)
      • Andrews, B., Iglesias, P., Sontag, E.D.: `Signal detection and approximate adaptation implies an approximate internal model', Proc. IEEE Conf. Decision and Control, December 2006, San Diego, p. 2364–2369.
    3. 3)
      • J. Tsang , J. Zhu , A. van Oudenaarden . MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell , 753 - 767
    4. 4)
      • T.-M. Yi , Y. Huang , M.I. Simon , J. Doyle . Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. USA , 4649 - 4653
    5. 5)
      • A. Levchenko , P.A. Iglesias . Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J. , 50 - 63
    6. 6)
      • S. Sasagawa , Y. Ozaki , K. Fujita , S. Kuroda . Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. , 365 - 373
    7. 7)
      • S. Mangan , S. Itzkovitz , A. Zaslaver , U. Alon . The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J. Mol. Biol. , 1073 - 1081
    8. 8)
      • A. Kremling , K. Bettenbrock , E.D. Gilles . A feed-forward loop guarantees robust behavior in escherichia coli carbohydrate uptake. Bioinformatics , 704 - 710
    9. 9)
      • P. Menè , G. Pugliese , F. Pricci , U. Di Mario , G.A. Cinotti , F. Pugliese . High glucose level inhibits capacitative Ca2+ influx in cultured rat mesangial cells by a protein kinase C-dependent mechanism. Diabetologia , 521 - 527
    10. 10)
      • T. Nagashima , H. Shimodaira , K. Ide . Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. J. Biol. Chem. , 4045 - 4056
    11. 11)
      • J.J. Tyson , K. Chen , B. Novak . Sniffers, buzzers, toggles, and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell. Biol. , 221 - 231
    12. 12)
      • M.P. Mahaut-Smith , S.J. Ennion , M.G. Rolf , R.J. Evans . ADP is not an agonist at P2X(1) receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br. J. Pharmacol. , 108 - 114
    13. 13)
      • E.D. Sontag . (1998) Mathematical control theory. Deterministic finite-dimensional systems.
    14. 14)
      • C. Beta , D. Wyatt , W.-J. Rappel , E. Bodenschatz . Flow photolysis for spatiotemporal stimulation of single cells. Anal. Chem. , 10 , 3940 - 3944
    15. 15)
      • P.A. Iglesias . Feedback control in intracellular signaling pathways: regulating chemotaxis in dictyostelium discoideum. Eur. J. Control. , 216 - 225
    16. 16)
      • S. Marsigliante , M.G. Elia , B. Di Jeso , S. Greco , A. Muscella , C. Storelli . Increase of [Ca(2+)](i) via activation of ATP receptors in PC-Cl3 rat thyroid cell line. Cell. Signal. , 61 - 67
    17. 17)
      • U. Alon . (2006) An introduction to systems biology: design principles of biological circuits.
    18. 18)
      • A. Ma'ayan , S.L. Jenkins , S. Neves . Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science , 1078 - 1083
    19. 19)
      • F.-D. Xu , Z.-R. Liu , Z.-Y. Zhang , J.-W. Shen . Robust and adaptive microRNA-mediated incoherent feedforward motifs. Chinese Phys. Lett. , 2 , 028701 - 3
    20. 20)
      • G. Hornung , N. Barkai . Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Comput. Biol.
    21. 21)
      • S. Semsey , S. Krishna , K. Sneppen , S. Adhya . Signal integration in the galactose network of Escherichia coli. Mol. Microbiol. , 465 - 476
    22. 22)
      • M.E. Wall , M.J. Dunlop , W.S. Hlavacek . Multiple functions of a feed-forward-loop gene circuit. J. Mol. Biol. , 501 - 514
    23. 23)
      • R. Nesher , E. Cerasi . Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes , S53 - 59
    24. 24)
      • L.A. Ridnour , A.N. Windhausen , J.S. Isenberg . Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA , 16898 - 16903
    25. 25)
      • J.S.A. Hepburn , W.M. Wonham . Error feedback and internal models on differentiable manifolds. IEEE Trans. Autom. Control , 397 - 403
    26. 26)
      • Andrews, B., Sontag, E.D., Iglesias, P.: `An approximate internal model principle: applications to nonlinear models of biological systems', Proc. 17th IFAC World Congress, Seoul, p. 6, Paper FrB25.3, 2008.
    27. 27)
      • D. Kim , Y.K. Kwon , K.H. Cho . The biphasic behavior of incoherent feed-forward loops in biomolecular regulatory networks. Bioessays , 1204 - 1211
    28. 28)
      • E.D. Sontag . Adaptation and regulation with signal detection implies internal model. Syst. Control Lett. , 2 , 119 - 126
    29. 29)
      • L. Yang , P.A. Iglesias . Positive feedback may cause the biphasic response observed in the chemoattractant-induced response of dictyostelium cells. Syst. Control Lett. , 4 , 329 - 337
    30. 30)
      • A. Cournac , J.A. Sepulchre . Simple molecular networks that respond optimally to time-periodic stimulation. BMC Syst Biol.
    31. 31)
      • B.A. Francis , W.M. Wonham . The internal model principle for linear multivariable regulators. Appl. Math. Optim. , 170 - 194
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2008.0171
Loading

Related content

content/journals/10.1049/iet-syb.2008.0171
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address