Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Multicarrier transmission

Multicarrier transmission

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multicarrier transmission has recently become popular, particularly in the area of wireless broadband access technology. This tutorial overview paper formulates multicarrier transmission from a signal processing point of view and provides an in-depth analytical understanding of its constituent fundamental concepts. Multicarrier transmission and reception principles are first derived for the single transmitting antenna and single receiving antenna systems and then extended to support more general and modern communication systems that use multiple transmitting and multiple receiving antennas.

References

    1. 1)
      • IEEE STD 802.11a-1999: ‘Part11-wireless LAN medium access control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 5 GHz band’.
    2. 2)
      • A. Goldsmith . (2005) Wireless communications.
    3. 3)
      • R. De Bruin , J. Smits . Digital video broadcasting: technology, standards and regulations.
    4. 4)
      • IEEE 802.16e-2005 and IEEE 802.16-2004/Core1-2005, Part16: ‘Air interface for fixed and mobile broadband wireless access systems’, February, 2006.
    5. 5)
      • B. Vucetic , J. Yuan . (2003) Space-time coding.
    6. 6)
      • Kadel, G.: `Diversity and equalisation in frequency domain', IEEE Veh. Tech. Conf. (VTC), May 1997, Phoenix, AZ, p. 894–898.
    7. 7)
      • D. Tse , P. Viswanath . (2005) Fundamental of wireless communications.
    8. 8)
    9. 9)
      • J.M. Cioffi , G.P. Dudevoir , E.V. Eyuboglu . MMSE decision-feedback equalizers and coding – Part II: Coding results. IEEE Trans. Commun. , 10 , 2595 - 2604
    10. 10)
    11. 11)
      • W. Goralski . (2002) ADSL and DSL technologies.
    12. 12)
      • L.C. Tran , T.A. Wysocki , A. Mertins . (2006) Complex orthogonal space-time processing in wireless communications.
    13. 13)
    14. 14)
      • IEEE STD 802.11g-2003: ‘Part11-wireless LAN medium access control (MAC) and physical layer (PHY) specifications: further higher data rate extension in the 2.4 GHz band’.
    15. 15)
      • A.V. Oppenheim , R.W. Schafer . (1989) Discrete time signal processing.
    16. 16)
      • H. Bolcskei , D. Gesbert , A. Paulraj . On the capacity of OFDM-based spatial multiplexing systems. IEEE Trans. Commun. , 2 , 225 - 234
    17. 17)
    18. 18)
      • A.J. Paulraj , R. Nabar , D. Gore . (2003) Introduction to space-time wireless communications.
    19. 19)
      • L. Hanzo , M. Munster , B.J. Choi . (2003) OFDM and MC-CDMA for broadband multiuser communications, WLANs and broadcasting.
    20. 20)
      • J.G. Proakis . (1995) Digital communications.
    21. 21)
    22. 22)
      • E. Telatar . Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. , 6 , 585 - 595
    23. 23)
      • Muller, S., Huber, J.: `A comparison of peak power reduction schemes for OFDM', IEEE GLOBECOM, November 1997, Phoenix, AZ, p. 1–5.
    24. 24)
    25. 25)
      • Sari, H., Karam, G., Jeanclaude, I.: `Frequency-domain equalisation of mobile radio and terrestrial broadcast channels', IEEE GLOBECOM, November–December 1994, San Francisco, p. 1–5.
    26. 26)
    27. 27)
      • O Neill, R., Lopes, L.: `Performance of amplitude limited multitone signals', IEEE Vehicle Technology Conf. (VTC), June 1994, Stockholm, Sweden, p. 1675–1679.
    28. 28)
      • Salvekar, A., Tellado, J., Cioffi, J.: `Peak-to-average power ratio reduction for block transmission systems in the presence of transmit filtering', IEEE Int. Conf. Communication (ICC), June 2001, Helsinki, Finland, p. 175–178.
    29. 29)
      • Y. Li , G.L. Stuber . (2006) Orthogonal frequency division multiplexing for wireless communications.
    30. 30)
      • J.M. Cioffi . (2005) Class reader for EE379c-advanced digital communication: multichannel modulation.
    31. 31)
      • R. Prasad , R. Van Nee . (2000) OFDM wireless multimedia communications.
    32. 32)
      • J.M. Cioffi . (2006) Class reader for EE379a-digital communications: signal processing.
    33. 33)
      • G.H. Golub , C.F. Van Loan . (1989) Matrix computations.
    34. 34)
      • R. Horn , C. Johnson . (1985) Matrix analysis.
    35. 35)
      • B. Girod , R. Rabenstein , A. Stenger . (2001) Signals and systems.
    36. 36)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr_20070021
Loading

Related content

content/journals/10.1049/iet-spr_20070021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address