Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Sparsity-aware space–time adaptive processing algorithms with L1-norm regularisation for airborne radar

Sparsity-aware space–time adaptive processing algorithms with L1-norm regularisation for airborne radar

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes novel sparsity-aware space–time adaptive processing (SA-STAP) algorithms with L1-norm regularisation for airborne phased-array radar applications. The proposed SA-STAP algorithms suppose that a number of samples of the full-rank STAP datacube are not meaningful for processing and the optimal full-rank STAP filter weight vector is sparse, or nearly sparse. The core idea of the proposed method is imposing a sparse regularisation (L1-norm type) to the minimum variance STAP cost function. Under some reasonable assumptions, the authors firstly propose an L1-based sample matrix inversion to compute the optimal filter weight vector. However, it is impractical because of its matrix inversion, which requires a high computational cost when using a large phased-array antenna. In order to compute the STAP parameters in a cost-effective way, the authors devise low-complexity algorithms based on conjugate gradient techniques. A computational complexity comparison with the existing algorithms and an analysis of the proposed algorithms are conducted. Simulation results with both simulated and the Mountain-Top data demonstrate that fast signal-to-interference-plus-noise-ratio convergence and good performance of the proposed algorithms are achieved.

References

    1. 1)
    2. 2)
      • D. Angelosante , J.A. Bazerque , G.B. Giannakis . Online adaptive estimation of sparse signals: where RLS meets the l1-norm. IEEE Trans. Signal Proc. , 7 , 3436 - 3446
    3. 3)
      • Parker, J.T., Potter, L.C.: `A Bayesian perspective on sparse regularization for STAP post-processing', Proc. IEEE Radar Conf., May 2010, p. 1471–1475.
    4. 4)
    5. 5)
    6. 6)
      • Ward, J.: `Space-time adaptive processing for airborne radar', 1015, technical, December 1994, MAvol.
    7. 7)
      • J.R. Guerci . (2003) Space-time adaptive processing for radar.
    8. 8)
      • Selesnick, I.W., Pillai, S.U., Li, K.Y., Himed, B.: `Angle-Doppler processing using sparse regularization', Proc. IEEE Int. Conf. Acoust. Speech and Sig. Proc., 2010, p. 2750–2753.
    9. 9)
    10. 10)
      • Jiang, C., Li, H., Rangaswamy, M.: `Conjugate gradient parametric adaptive matched filter', Proc. IEEE Radar Conf., 2010, p. 740–745.
    11. 11)
      • H.L. Van Trees . (2002) Optimal array processing, part IV of detection, estimation and modulation theory.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • Titi, G.W., Marshall, D.F.: `The ARPA/NAVY mountaintop program: adaptive signal processing for airborne early warning radar', Proc. IEEE Int. Conf. Acoust. Speech and Signal, May 1996, p. 1165–1168.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • Z. Yang , Z. Liu , X. Li , L. Nie . Performance analysis of STAP algorithms based on fast sparse recovery techniques. Prog. Electromagn. Res. B , 251 - 268
    22. 22)
    23. 23)
      • http://spib.rice.edu/spib/mtn_top.html.
    24. 24)
      • Z. Yang , R.C. de Lamare , X. Li . L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar. IEEE Trans. Signal Process. , 2 , 674 - 686
    25. 25)
    26. 26)
      • H. Wang , L. Cai . On adaptive spartial-temporal processing for airborne surveillance radar systems. IEEE Trans. Aeros. Electron. Syst. , 3 , 660 - 670
    27. 27)
    28. 28)
      • Maria, S., Fuchs, J.J.: `Application of the global matched filter to STAP data an efficient algorithmic approach', Proc. IEEE Int. Conf. Acoust. Speech and Sig. Proc., 2006, p. 14–19.
    29. 29)
      • Fa, R., de Lamare, R.C.: `Knowledge-aided reduced-rank STAP for MIMO radar based on based on joint iterative constrained optimization of adaptive filters with multiple constraints', Proc. IEEE Int. Conf. Acoust. Speech and Sig. Proc., 2010, p. 2762–2765.
    30. 30)
      • Yang, Z., de Lamare, R.C., Li, X.: ` regularized STAP algorithm with a generalized sidelobe canceler architecture for airborne radar', Proc. IEEE Workshop on Stat. Sig. Proc., 2011, Nice, France, p. 329–332.
    31. 31)
    32. 32)
    33. 33)
      • P.S. Chang , A.N. Willson Jr. . Analysis of conjugate gradient algorithms for adaptive filtering. IEEE Trans. Sig. Proc. , 2 , 409 - 418
    34. 34)
    35. 35)
      • Z. Yang , X. Li , H. Wang . Space-time adaptive processing based on weighted regularized sparse recovery. Prog. Electromagn. Res. B , 245 - 262
    36. 36)
      • Klemm, R.: `Introduction to space-time adaptive processing', Proc. IEE Colloquium on Space-Time Adaptive Proc., 1998.
    37. 37)
      • K. Sun , H. Zhang , G. Li , H. Meng , X. Wang . Airborne radar STAP using sparse recovery of clutter spectrum.
    38. 38)
    39. 39)
      • I. Scott , B. Mulgrew . Sparse LCMV beamformer design for suppression of ground clutter in airborne radar. IEEE Trans. Signal Proc. , 12 , 2843 - 2851
    40. 40)
      • Fa, R., de Lamare, R.C., Nascimento, V.H.: `Knowledge-aided STAP algorithm using convex combination of inverse covariance matrices for heterogeneous clutter', Proc. IEEE Int. Conf. Acoust., Speech and Sig. Proc., September 2010, p. 2742–2745.
    41. 41)
    42. 42)
    43. 43)
      • Pados, D.A., Karystinos, G.N., Batalama, S.N., Matyjas, J.D.: `Short-data-record adaptive detection', Proc. IEEE Radar Conf., April 2007, p. 357–361.
    44. 44)
    45. 45)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2011.0254
Loading

Related content

content/journals/10.1049/iet-spr.2011.0254
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address