Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Intelligent sensors using computationally efficient Chebyshev neural networks

Intelligent sensors using computationally efficient Chebyshev neural networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Intelligent signal processing techniques are required for auto-calibration of sensors, and to take care of nonlinearity compensation and mitigation of the undesirable effects of environmental parameters on sensor output. This is required for accurate and reliable readout of the measurand, especially when the sensor is operating in harsh operating conditions. A novel computationally efficient Chebyshev neural network (CNN) model that effectively compensates for such non-idealities, linearises and calibrates automatically is proposed. By taking an example of a capacitive pressure sensor, through extensive simulation studies it is shown that performance of the CNN-based sensor model is similar to that of a multilayer perceptron-based model, but the former has much lower computational requirement. The CNN model is capable of producing pressure readout with a full-scale error of only ±1.0% over a wide operating range of −50 to 200°C.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • G.P. Fotis , L. Ekonomou , T.I. Maris , P. Liatsis . Development of an artificial neural network software tool for the assessment of the electromagnetic field radiating by electrostatic discharges. IET Sci., Meas. Technol. , 5 , 261 - 269
    5. 5)
      • N.J. Medrano-Marques , B. Martin-del-Brio . Sensor linearization with neural networks. IEEE Trans. Indus. Electron. , 6 , 1288 - 1290
    6. 6)
      • A. Carullo , F. Ferraris , S. Graziani , U. Grimaldi , M. Parvis . Ultrasonic distance sensor improvement using a two-level neural networks. IEEE Trans. Instrum. Meas. , 677 - 682
    7. 7)
      • B. Betts . Smart sensors. IEEE Spectr. , 4 , 50 - 53
    8. 8)
      • A.M. Sabatini . A digital signal-processing technique for compensating ultrasonic sensors. IEEE Trans. Instrum. Meas. , 4 , 869 - 874
    9. 9)
      • S. Haykin . (1999) Neural networks.
    10. 10)
      • M. Henry . Plant asset management via intelligent sensors. IEE Comput. Control Eng. J. , 3 , 211 - 213
    11. 11)
    12. 12)
      • Patra, J.C., Juhola, M.: `Intelligent sensors using Chebyshev neural networks', Proc. Intl. Conf. Sensing Technology, , November 2007, Palmerston North,, New Zealand, p. 420–425.
    13. 13)
      • P. Hille , R. Hohler , H. Strack . A linearization and compensation method for integrated sensors. Sens. Actuators-B , 95 - 102
    14. 14)
      • E.L. Hines , E. Llobet , J.W. Gardener . Electronic noses: a review of signal processing techniques. IEE Proc., Circuits Dev. Syst. , 6 , 297 - 310
    15. 15)
    16. 16)
    17. 17)
      • A.P. Singh , S. Kumar , T.S. Kamal . Virtual compensator for correcting the disturbing variable effect in transducers. Sens. Actuators-A , 1 - 9
    18. 18)
    19. 19)
      • A.P. Singh , S. Kumar , T.S. Kamal . Fitting transducer characteristics to measured data using a virtual curve tracer. Sens. Actuators-A , 145 - 153
    20. 20)
      • R.M. Dowdeswell , P.A. Payne . Odour measurement using conducting polymer gas sensors and an artificial neural network decision system. IEE Eng. Sci. Edu. J. , 3 , 129 - 134
    21. 21)
    22. 22)
      • X. Li , G.C. Meijer , G.W. De Jong . A microcontroller-based self-calibration technique for a smart capacitance angular-position sensor. IEEE Trans. Instrum. Meas. , 4 , 888 - 892
    23. 23)
    24. 24)
    25. 25)
      • J.M. Dias Pereira , P.M.B. Silva Girao , O. Postolache . Fitting transducer characteristics to measured data. IEEE Instrum. Meas. Mag. , 4 , 26 - 39
    26. 26)
    27. 27)
    28. 28)
      • I. Maric . Automatic digital correction of measurement data based on M-point autocalibration and inverse polynomial approximation. IEEE Trans. Indus. Electron. , 2 , 317 - 322
    29. 29)
    30. 30)
    31. 31)
      • J.C. Patra , A. Van den Bos , A.C. Kot . An NN-based smart capacitive pressure sensor in dynamic environment. Sens. Actuators-B , 26 - 38
    32. 32)
    33. 33)
      • J.C. Patra , E.L. Ang , N.S. Chaudhari , A. Das . Neural-network-based smart sensor framework operating in a harsh environment. J. Appl. Signal Process. , 558 - 574
    34. 34)
    35. 35)
      • J.C. Patra , A.C. Kot . Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst., Man Cybern., Part B: Cybern. , 3 , 1 - 7
    36. 36)
    37. 37)
      • R.Z. Morawski . Digital signal processing in measurement microsystems. IEEE Instrum. Meas. Mag. , 2 , 43 - 50
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt_20070061
Loading

Related content

content/journals/10.1049/iet-smt_20070061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address