Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Molecular beam epitaxial (MBE) growth and spectroscopy of dilute nitride InAsN:Sb for mid-infrared applications

Molecular beam epitaxial (MBE) growth and spectroscopy of dilute nitride InAsN:Sb for mid-infrared applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The molecular beam epitaxial (MBE) growth and spectroscopy of dilute nitride InAsN:Sb epilayers are presented. Nitrogen incorporation in InAsN epilayers grown by radio-frequency plasma-assisted MBE was investigated as a function of growth conditions. High-quality InAsN epilayers containing up to 2.5% nitrogen were successfully grown using optimal growth conditions. The optical properties of InAsN were studied by photoluminescence (PL). Intense PL emission at 4 K was observed with double-peak features, which were attributed to free carrier recombination and localised carrier recombination. Strong room temperature PL emission extending up to a wavelength of 4.5 µm was obtained and a bandgap reduction of 63 meV for 1% N was deduced. The electronic properties of InAsN such as residual carrier concentration and mobility were also studied by Hall effect measurements. Further improvement of InAsN by addition of Sb during growth is also discussed. The authors observed that the introduction of Sb flux dramatically enhances nitrogen incorporation and significantly improves optical properties. In addition, Sb incorporation is enhanced with the presence of nitrogen. The authors also report the realisation of InAsN:Sb/InAs mid-infrared light emitting diodes operating at 4.0 µm at 4 K.

References

    1. 1)
      • V. Sallet , L. Largeau , O. Mauguin , L. Travers , J.C. Harmand . MBE growth of InAsN on (100) InAs substrates. Phys. Status Solidi (b)
    2. 2)
      • Q. Zhuang , A. Godenir , A. Krier . Photoluminescence in InAsN epilayers grown by molecular beam epitaxy. J. Phys. D
    3. 3)
      • W. Shan , W. Walukiewicz , J.W. Ager . Band anticrossing in GaInNAs alloys. Phys. Rev. Lett.
    4. 4)
      • S. Sakai , T.S. Cheng , T.C. Foxon , T. Sugahura , Y. Naoi , H. Naoi . Growth of InNAs on GaAs(1 0 0) substrates by molecular-beam epitaxy. J. Crystal Growth
    5. 5)
      • E.P. O'Reilly , A. Lindsay , P.J. Klar , A. Polimeni , M. Capizzi . Trends in the electronic structure of dilute nitride alloys. Semicond. Sci. Technol.
    6. 6)
      • M. Osinski . InNAs – a new optoelectronic material for mid-infrared applications. Opto-electron. Rev. , 4
    7. 7)
      • Q. Zhuang , A. Godenir , A. Krier , G. Tsai , H.H. Lin . Molecular beam epitaxial growth of InAsN:Sb for midinfrared optoelectronics. Appl. Phys. Lett.
    8. 8)
      • J.S. Wang , H.H. Lin , L.W. Song , G.R. Chen . Growth of InAsN/InGaAs(P) quantum wells on InP by gas source molecular beam epitaxy. J. Vac. Sci. Technol. B , 1
    9. 9)
      • T.D. Veal , L.F.J. Piper , P.H. Jefferson . Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys. Appl. Phys. Lett.
    10. 10)
      • A. Portavoce , I. Berbezier , P. Gas , A. Ronda . Sb surface segregation during epitaxial growth of SiGe heterostructures: the effects of Ge composition and biaxial stress. Phys. Rev. B
    11. 11)
      • A. Haug . Auger recombination in direct-gap semiconductors: band-structure effects. J. Phys.
    12. 12)
      • A. Patanè , G. Allison , L. Eaves . Electron coherence length and mobility in highly mismatched III–N–V alloys. Appl. Phys. Lett.
    13. 13)
      • J. Wagner , K. Kohler , P. Ganser , M. Maier . Bonding of nitrogen in dilute InAsN and high In-content GaInAsN. Appl. Phys. Lett.
    14. 14)
      • H.D. Sun , A.H. Clark , H.Y. Liu . Optical characteristics of 1.55 µm GaInNAs multiple quantum wells. Appl. Phys. Lett.
    15. 15)
      • Z.C. Niu , S.Y. Zhang , H.Q. Ni . GaAs-based room-temperature continuous-wave 1.59 µm GaInNAsSb single-quantum-well laser diode grown by molecular-beam epitaxy. Appl. Phys. Lett.
    16. 16)
      • M. Kondow , K. Uomi , K. Hosomi , T. Mozume . Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source. Jpn. J. Appl. Phys. Pt. 2
    17. 17)
      • S. Fay , E.P. O'Reilly . Intrinsic limits on electron mobility in dilute nitride semiconductors. Appl. Phys. Lett.
    18. 18)
      • D. Fowler , O. Makarovsky , A. Patanè , L. Eaves , L. Geelhaar , H. Riechert . Electron conduction in two-dimensional GaAs1-yNy channels. Phy. Rev. B
    19. 19)
      • J.F. Nutzel , G. Abstreiter . Segregation and diffusion on semiconductor surfaces. Phys. Rev. B
    20. 20)
      • A.A. El-Emawy , H.J. Cao , E. Zhmayev , J.H. Lee , D. Zubia , M. Osiński . MOCVD growth of InNxAs1−x on GaAs using dimethylhydrazine. Phys. Status Solidi (b) , 1 , 263 - 267
    21. 21)
      • Y.D. Jang , J.S. Yim , U.H. Lee . InAsN/GaAs quantum dots with an intense and narrow photoluminescence peak at 1.3 µm. Physica E , 127 - 128
    22. 22)
      • S.M. Wang , Q.F. Gu , Y.Q. Wei . High-quality GaNAs/GaAs quantum wells with light emission up to 1.44 µm grown by molecular-beam epitaxy. Appl. Phys. Lett.
    23. 23)
      • A. Polimeni , M. Capizzi , M. Geddo , M. Fischer , M. Reinhardt , A. Forchel . Effect of temperature on the optical properties of (InGa)(AsN)/GaAs single quantum wells. Appl. Phys. Lett.
    24. 24)
      • X. Yang , M.J. Jurkovic , J.B. Heroux , W.I. Wang . Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers. Appl. Phys. Lett.
    25. 25)
      • A. Yu , D. Egorov , B. Bernklau . Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy. J. Crystal Growth , 545 - 552
    26. 26)
      • M. Kuroda , R. Katayama , K. Onabe , Y. Shiraki . Optical characterization of InAsN single quantum wells grown by RF-MBE. Phys. Status Solidi (b)
    27. 27)
      • R. Beresford , K.S. Stevens , A.F. Schwartzman . Microstructure and composition of InAsN alloys grown by plasma-source molecular beam epitaxy. J. Vac. Sci. Technol. B , 3
    28. 28)
      • H.D. Sun , S. Calvez , M.D. Dawson . Role of Sb in the growth and optical properties of 1.55 µm GaInN(Sb)As/GaNAs quantum-well structures by molecular-beam epitaxy. Appl. Phys. Lett.
    29. 29)
      • D.K. Shih , H.H. Lin , L.W. Sung , T.Y. Chu , T.R. Yang . Band gap reduction in InAsN alloys. Jpn. J. Appl. Phys.
    30. 30)
      • Q. Zhuang , A.M.R. Godenir , A. Krier , K.T. Lai , S.K. Haywood . Room temperature photoluminescence at 4.5 µm from InAsN. J. Appl. Phys.
    31. 31)
      • M. Kuroda , A. Nishikawa , R. Katayama , K. Onabe . Growth and characterization of InAsN alloy films and quantum wells. J. Crystal Growth
    32. 32)
      • R. Kudrawiec , J. Misiewicz , Q. Zhuang , A.M.R. Godenir , A. Krier . Photoreflectance study of the energy gap and spin-orbit splitting in InNAs alloys. Appl. Phys. Lett.
    33. 33)
      • S.R. Kurtz , R.M. Biefeld , A.A. Allerman , A.J. Howard , M.H. Crawford , M.W. Pelczynski . Pseudomorphic InAsSb multiple quantum well injection laser emitting at 3.5 µm. Appl. Phys. Lett.
    34. 34)
      • M. Kondow , T. Kitatani . Molecular beam epitaxy of GaNaS and GaInNAs. Semicond. Sci. Technol.
    35. 35)
      • D.E. Aspnes . Third-derivative modulation spectroscopy with low-field electroreflectance. Surf. Sci.
    36. 36)
      • D.K. Shih , H.H. Lin , Y.H. Lin . InAs0.97N0.03/InGaAs/InP multiple quantum well lasers with emission wavelength λ=2.38 µm. Electron. Lett. , 22
    37. 37)
      • S.R. Bank , H.B. Yuen , H. Bae , M.A. Wistey , A. Moto , J.S. Harris . Enhanced luminescence in GaInNAsSb quantum wells through variation of the arsenic and antimony fluxes. Appl. Phys. Lett.
    38. 38)
      • L.H. Li , V. Sallet , G. Patriarche . Investigations on GaInNAsSb quinary alloy for 1.5 µm laser emission on GaAs. Appl. Phys. Lett.
    39. 39)
      • J.C. Harmand , G. Ungaro , L. Largeau , G. Le Roux . Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN. Appl. Phys. Lett.
    40. 40)
      • C. Skierbiszewski , P. Perlin , P. Wisniewski . Effect of nitrogen-induced modification of the conduction band structure on electron transport in GaAsN alloys. Phys. Status Solidi B
    41. 41)
      • I.A. Buyanova , W.M. Chen , G. Pozina . Mechanism for low-temperature photoluminescence in GaNAs/GaAs structures grown by molecular-beam epitaxy. Appl. Phys. Lett.
    42. 42)
      • B.Q. Sun , M. Gal , Q. Gao , H.H. Tan , C. Jagadish . On the nature of radiative recombination in GaAsN. Appl. Phys. Lett.
    43. 43)
      • I. Vurgaftman , J.R. Meyer , L.R. Ram-Mohan . Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys.
    44. 44)
      • H. Naoi , Y. Naoi , S. Sakai . MOCVD growth of InAsN for infrared applications. Solid State Electron. , 2
    45. 45)
      • I.T. Yoon , T.S. Ji , S.J. Oh , J.C. Choi , H.L. Park . Concentration dependent Pl of Te-doped In0.5Ga0.5P layers grown by LPE. J. Appl. Phys.
    46. 46)
      • V.A. Odnoblyudov , A. Yu Egorov , A.R. Kovsh . Thermodynamic analysis of the MBE growth of GaInAsN. Semicond. Sci. Technol.
    47. 47)
      • S. Dhar , T.D. Das , M. de la Mare , A. Krier . Properties of dilute InAsN layers grown by liquid phase epitaxy. Appl. Phys. Lett.
    48. 48)
      • K. Volz , V. Gambin , W. Ha . The role of Sb in the MBE growth of (GaIn)(NAsSb). J. Crystal Growth
    49. 49)
      • R. Mouillet , L.-A. de Vaulchier , E. Deleporte , Y. Guldner , L. Travers , J.-C. Harmand . Role of nitrogen in the mobility drop of electrons in modulation-doped GaAsN/AlGaAs heterostructures. Solid State Commun.
    50. 50)
      • N. Balkan . The physics and technology of dilute nitrides. J. Phys.: Condens. Matter , 31
    51. 51)
      • Z. Pan , L.H. Li , W. Zhang , Y.W. Lin , R.H. Wu . Kinetic modeling of N incorporation in GaInNAs growth by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett.
    52. 52)
      • H. Naoi , D.M. Shaw , Y. Naoi , G.J. Collins , S. Sakai . Growth of InNAs by low-pressure metalorganic chemical vapor deposition employing microwave-cracked nitrogen and in situ generated arsine radicals. J. Crystal Growth , 511 - 517
    53. 53)
      • P. Kringhoj , A. Nylandsted Larsen , S.Y. Shirayev . Diffusion of Sb in strained and relaxed Si and SiGe. Phys. Rev. Lett.
    54. 54)
      • Carrington, P.: 2009, PhD, .
    55. 55)
      • X. Yang , J.B. Heroux , L.F. Mei , W.I. Wang . InGaAsNSb/GaAs quantum wells for 1.55 µm lasers grown by molecular-beam epitaxy. Appl. Phys. Lett.
    56. 56)
      • J.A. Gupta , P.J. Barrios , J.A. Caballero . Gain and lifetime of GaInNAsSb narrow ridge waveguide laser diodes in continuous-wave operation at 1.56 µm. Appl. Phys. Lett.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2009.0034
Loading

Related content

content/journals/10.1049/iet-opt.2009.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address